
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

JavaServer Pages™ Standard Tag Library

Version 1.1

Pierre Delisle, editor

Please send comments to jsr-52-comments@jcp.org

November 2003

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

JavaServer Pages™ Standard Tag Library (JSTL) Specification ("Specification")
Version: 1.1
Status: FCS, Maintenance Release
Release: November 24, 2003

Copyright 2003 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right
to sublicense), under the Sun's applicable intellectual property rights to view, download, use and reproduce the Specification only for the
purpose of internal evaluation, which shall be understood to include developing applications intended to run on an implementation of the
Specification provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under
any applicable copyrights or patent rights it may have in the Specification to create and/or distribute an Independent Implementation of the
Specification that: (i) fully implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset, superset
or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within
the Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented; and (iii) passes the
TCK (including satisfying the requirements of the applicable TCK Users Guide) for such Specification. The foregoing license is expressly
conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through" requirements in any license You
grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to implementations
of the Specification (and products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant
or otherwise pass through to your licensees any licenses under Sun's applicable intellectual property rights; nor (b) authorize your licensees
to make any claims concerning their implementation's compliance with the Spec in question.

For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the Specification that neither derives from
any of Sun's source code or binary code materials nor, except with an appropriate and separate license from Sun, includes any of Sun's source
code or binary code materials; and "Licensor Name Space" shall mean the public class or interface declarations whose names begin with "java",
"javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun through the Java Community Process, or any
recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material provision of or act outside the
scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, the Java Coffee Cup logo, J2EE, and JavaServer Pages are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR
OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification;
(ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that later versions or
releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Specification and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary
and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related
to the Specification and future versions, implementations, and test suites thereof.

(LFI#136183/Form ID#011801)

iv

Contents

Preface xii

1. Introduction 1

1.1 Goals 1

1.2 Multiple Tag Libraries 2

1.3 Container Requirement 2

2. Conventions 3

2.1 How Actions are Documented 3

2.1.1 Attributes 4

2.1.2 Syntax Notation 5

2.2 Scoped Variables 5

2.2.1 var and scope 6

2.2.2 Visibility 6

2.3 Static vs Dynamic Attribute Values 7

2.4 White Spaces 7

2.5 Body Content 7

2.6 Naming 8

2.7 Errors and Exceptions 8

2.8 Configuration Data 10

2.9 Default Values 11

v JSTL 1.1 • November 2003

3. Expression Language Overview 13

3.1 Expressions and Attribute Values 13

3.2 Accessing Application Data 14

3.3 Nested Properties and Accessing Collections 15

3.4 Operators 16

3.5 Automatic Type Conversion 16

3.6 Default Values 17

4. General-Purpose Actions 19

4.1 Overview 19

4.2 <c:out> 22

4.3 <c:set> 24

4.4 <c:remove> 26

4.5 <c:catch> 27

5. Conditional Actions 29

5.1 Overview 29

5.2 Custom Logic Actions 31

5.3 <c:if> 32

5.4 <c:choose> 33

5.5 <c:when> 34

5.6 <c:otherwise> 35

6. Iterator Actions 37

6.1 Overview 37

6.1.1 Collections of Objects to Iterate Over 38

6.1.2 Map 39

6.1.3 Iteration Status 39

6.1.4 Range Attributes 40

6.1.5 Tag Collaboration 40

6.2 <c:forEach> 42

Contents vi

6.3 <c:forTokens> 45

7. URL Related Actions 47

7.1 Hypertext Links 47

7.2 Importing Resources 48

7.2.1 URL 49

7.2.2 Exporting an object: String or Reader 49

7.2.3 URL Encoding 50

7.2.4 Networking Properties 50

7.3 HTTP Redirect 51

7.4 <c:import> 52

7.5 <c:url> 57

7.6 <c:redirect> 59

7.7 <c:param> 61

8. Internationalization (i18n) Actions 63

8.1 Overview 64

8.1.1 <fmt:message> 65

8.2 I18n Localization Context 65

8.2.1 Preferred Locales 66

8.3 Determinining the Resource Bundle for an i18n Localization Context 68

8.3.1 Resource Bundle Lookup 68

8.3.2 Resource Bundle Determination Algorithm 69

8.3.3 Examples 70

8.4 Response Encoding 72

8.5 <fmt:setLocale> 74

8.6 <fmt:bundle> 76

8.7 <fmt:setBundle> 78

8.8 <fmt:message> 80

8.9 <fmt:param> 83

8.10 <fmt:requestEncoding> 85

vii JSTL 1.1 • November 2003

8.11 Configuration Settings 87

8.11.1 Locale 87

8.11.2 Fallback Locale 87

8.11.3 I18n Localization Context 88

9. Formatting Actions 89

9.1 Overview 89

9.1.1 Formatting Numbers, Currencies, and Percentages 89

9.1.2 Formatting Dates and Times 90

9.2 Formatting Locale 91

9.3 Establishing a Formatting Locale 93

9.3.1 Locales Available for Formatting Actions 93

9.3.2 Locale Lookup 93

9.3.3 Formatting Locale Lookup Algorithm 93

9.4 Time Zone 94

9.5 <fmt:timeZone> 95

9.6 <fmt:setTimeZone> 96

9.7 <fmt:formatNumber> 98

9.8 <fmt:parseNumber> 102

9.9 <fmt:formatDate> 105

9.10 <fmt:parseDate> 108

9.11 Configuration Settings 111

9.11.1 TimeZone 111

10. SQL Actions 113

10.1 Overview 113

10.1.1 Data Source 113

10.1.2 Querying a Database 114

10.1.3 Updating a Database 116

10.1.4 SQL Statement Parameters 116

10.2 Database Access 118

Contents viii

10.3 <sql:query> 119

10.4 <sql:update> 122

10.5 <sql:transaction> 125

10.6 <sql:setDataSource> 128

10.7 <sql:param> 130

10.8 <sql:dateParam> 132

10.9 Configuration Settings 134

10.9.1 DataSource 134

10.9.2 MaxRows 134

11. XML Core Actions 135

11.1 Overview 135

11.1.1 XPath Context 135

11.1.2 XPath Variable Bindings 136

11.1.3 Java to XPath Type Mappings 137

11.1.4 XPath to Java Type Mappings 138

11.1.5 The select Attribute 138

11.1.6 Default Context Node 138

11.1.7 Resources Access 139

11.1.8 Core Actions 139

11.2 <x:parse> 141

11.3 <x:out> 144

11.4 <x:set> 146

12. XML Flow Control Actions 147

12.1 Overview 147

12.2 <x:if> 149

12.3 <x:choose> 151

12.4 <x:when> 152

12.5 <x:otherwise> 153

12.6 <x:forEach> 154

ix JSTL 1.1 • November 2003

13. XML Transform Actions 157

13.1 Overview 157

13.2 <x:transform> 159

13.3 <x:param> 162

14. Tag Library Validators 163

14.1 Overview 163

15. Functions 167

15.1 Overview 167

15.1.1 The length Function 167

15.1.2 String Manipulation Functions 168

15.2 fn:contains 171

15.3 fn:containsIgnoreCase 172

15.4 fn:endsWith 173

15.5 fn:escapeXml 174

15.6 fn:indexOf 175

15.7 fn:join 176

15.8 fn:length 177

15.9 fn:replace 178

15.10 fn:split 179

15.11 fn:startsWith 180

15.12 fn:substring 181

15.13 fn:substringAfter 182

15.14 fn:substringBefore 183

15.15 fn:toLowerCase 184

15.16 fn:toUpperCase 185

15.17 fn:trim 186

16. Java APIs 187

javax.servlet.jsp.jstl.core 189

Contents x

ConditionalTagSupport 190

Config 193

LoopTag 199

LoopTagStatus 200

LoopTagSupport 203

javax.servlet.jsp.jstl.fmt 211

LocaleSupport 212

LocalizationContext 215

javax.servlet.jsp.jstl.sql 217

Result 218

ResultSupport 220

SQLExecutionTag 222

javax.servlet.jsp.jstl.tlv 223

PermittedTaglibsTLV 224

ScriptFreeTLV 226

A. Compatibility & Migration 229

B. Changes 231

xi JSTL 1.1 • November 2003

xii

Preface

This is the JavaServer Pages™ Standard Tag Library 1.1 (JSTL 1.1) specification,
developed by the JSR-52 expert group under the Java Community Process.
See http://www.jcp.org.

Related Documentation
Implementors of JSTL and authors of JSP pages may find the following documents
worth consulting for additional information:.

JavaServer Pages (JSP) http://java.sun.com/jsp

Java Servlet Technology http://java.sun.com/servlet

Java 2 Platform, Standard Edition http://java.sun.com/j2se

Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

JavaBeans http://java.sun.com/beans

JDBC http://java.sun.com/jdbc

Java Technology and XML http://java.sun.com/xml

XPath specification http://www.w3.org/TR/xpath

XML home page at W3C http://www.w3.org/XML

HTML home page at W3C http://www.w3.org/MarkUp

XML.org home page http://www.xml.org

xiii JSTL 1.1 • November 2003

Typographical Conventions

Acknowledgments
The JavaServer Pages™ Standard Tag Library (JSTL) specification is the result of
collaborative work involving many individuals, all driven by a common goal of
designing the best libraries possible for the JSP page author community.

We would like to thank all members of the JSR-52 expert group: Nathan Abramson,
Shawn Bayern, Hans Bergsten, Paul Bonfanti, Vince Bonfanti, David Brown, Larry
Cable, Tim Dawson, Morgan Delagrange, Bob Foster, David Geary, Scott Hasse, Hal
Hildebrand, Jason Hunter, Serge Knystautas, Mark Kolb, Wellington Lacerda, Jan
Luehe, Geir Magnusson Jr., Dan Malks, Craig McClanahan, Richard Morgan, Glenn
Nielsen, Rickard Oberg, Joseph B. Ottinger, Eduardo Pelegri-Llopart, Sam Pullara,
Tom Reilly, Brian Robinson, Russ Ryan, Pasi Salminen, Steven Sargent, Allan Scott,
Virgil Sealy, Magnus Stenman, Gael Stevens, James Strachan, Christine Tomlinson,
Norbert von Truchsess, Keyton Weissinger, Clement Wong, Alex Yiu.

This specification was first initiated by Eduardo Pelegri-Llopart. Eduardo's
leadership in making the Java platform the best technology available for the web
layer has been key in shaping the vision behind the standard tag library.

Shawn Bayern and Hans Bergsten deserve special credit for being actively involved
in all design issues of this specification. Their vast expertise and commitment to
excellence has had a profound impact in every single aspect of this specification.
Mille mercis Shawn et Hans! Don't know how we would have done it without you
two.

Many thanks to Jan Luehe for taking ownership of the internationalization and
formatting chapters of this specification on short notice, and doing an incredible job.

Font Style Uses

Italic Emphasis, definition of term.

Monospace
Syntax, code examples, attribute names, Java language types,
API, enumerated attribute values.

Preface xiv

Special mention to Nathan Abramson for being a driving force behind the
expression language introduced in JSTL, to James Strachan for leading the group in
our understanding of XML for page authors, and to Craig McClanahan for his help
on servlet and J2EE platform related issues.

This specification has drawn a lot of its design ideas from pioneers in the field of tag
libraries. We are grateful to the Jakarta project at Apache, as well as other efforts in
the industry, where projects led by Craig McClanahan (Struts), James Strachan
(XTags), Morgan Delagrange (DBTags), Tim Dawson (I18N), Glenn Nielsen (many
utility taglibs), Scott Hasse (JPath), Dmitri Plotnikov (JXPath), Pasi Salminen (O&D
Struts), have greatly influenced the design of the JSTL libraries.

The RI team composed of Shawn Bayern (lead), Nathan Abramson, Justyna Horwat,
and Jan Luehe has done a wonderful job at turning code faster than the specification
could be written.

Quality has been in the capable hands of Ryan Lubke, lead of the TCK team that also
includes Lance Andersen. David Geary’s help in doing thorough reviews of the
specification was also greatly appreciated.

We are also grateful to the product team at Sun Microsystems who helped us sail
efficiently through this specification: Jim Driscoll, Karen Schaffer, George Grigoryev,
Stephanie Bodoff, Vanitha Venkatraman, Prasad Subramanian, and Xiaotan He.

Finally, we'd like to thank the community at large for their ever increasing interest in
this technology. We sure hope you’ll enjoy the JSP Standard Tag Library.

Comments
We are interested in improving this specification and welcome your comments and
suggestions. You can email your comments to us at:

jsr-52-comments@jcp.org

xv JSTL 1.1 • November 2003

1

CHAPTER 1

Introduction
This is the JavaServer Pages™ Standard Tag Library 1.1 (JSTL 1.1) specification,
developed by the JSR-52 expert group under the Java Community Process (http://
www.jcp.org).

1.1 Goals
The ultimate goal of JSTL is to help simplify JavaServer™ Pages (JSP™) page
authors’ lives.

A page author is someone who is responsible for the design of a web application’s
presentation layer using JSP pages. Many page authors are not fluent in any
programming language.

One of the main difficulties a page author is faced with is the need to use a scripting
language (the default being the Java programming language) to manipulate the
dynamic data within a JSP page. Unfortunately, page authors often see scripting
languages as complex and not very well adapted to their needs.

JSTL offers the following capabilities:

■ General-purpose actions

These actions complement the expression language by allowing a page author to
easily display expressions in the expression language, set and remove the value of
JSP scoped attributes, as well as catch exceptions.

■ Control flow actions

Tag-based control flow structures (conditionals, iterators), which are more natural
to page authors.

■ Tag library validators (TLVs)

TLVs allow projects to only allow specific tag libraries, as well as enforce JSP
coding styles that are free of scripting elements.

2 JSTL 1.1 • November 2003

The other key aspect of JSTL is that it provides standard actions and standard EL
functions for functionality most often needed by page authors. These cover the
following topics:

■ Accessing URL-based resources

■ Internationalization (i18n) and text formatting

■ Relational database access (SQL)

■ XML processing

■ String manipulation

1.2 Multiple Tag Libraries
A tag library is a collection of actions that encapsulates functionality to be used from
within a JSP page. JSTL includes a wide variety of actions that naturally fit into
discrete functional areas. This is why JSTL, although referred to as the standard tag
library (singular), is exposed via multiple tag libraries to clearly identify the
functional areas it covers, as well as to give each area its own namespace. The tables
below lists these functional areas along with the URIs used to reference the libraries.
The tables also show the prefixes used in this specification (although page authors
are free to use any prefix they want).

JSTL Tag Libraries

1.3 Container Requirement
JSTL 1.1 requires a JSP 2.0 web container. Please note that the expression language is
part of the JSP specification starting with JSP 2.0.

Functional Area URI Prefix

core http://java.sun.com/jsp/jstl/core c

XML processing http://java.sun.com/jsp/jstl/xml x

I18N capable formatting http://java.sun.com/jsp/jstl/fmt fmt

relational db access
(SQL)

http://java.sun.com/jsp/jstl/sql sql

Functions http://java.sun.com/jsp/jstl/functions fn

3

CHAPTER 2

Conventions
This chapter describes the conventions used in this specification.

2.1 How Actions are Documented
JSTL actions are grouped according to their functionality. These functional groups of
actions are documented in their own chapter using the following structure:

■ Motivation

Describes the motivation for standardizing the actions.

■ Overview

Provides an overview of the capabilities provided by the actions. Sample code
featuring these actions in their most common use cases is also provided.

■ One section per action, with the following structure:

■ Name

Tag library prefixes are used in this specification for all references to JSTL
actions (e.g.: <c:if> instead of <if>).

■ Short Description

■ Syntax

The syntax notation is described in Section 2.1.2.

■ Body Content

This section specifies which type of body content is supported by the action.
As defined by the JSP specification, the body content type can be one of empty,
JSP, or tagdependent. The section also specifies if the body content is
processed by the action or is simply ignored by the action and just written to
the current JspWriter. If the body content is processed, information is given
on whether or not the body content is trimmed before the action begins
processing it.

■ Attributes

4 JSTL 1.1 • November 2003

Details in Section 2.1.1 below.

■ Constraints

List of additional constraints enforced by the action.

■ Null & Error Handling

Details on how null and empty values are processed, as well as on exceptions
thrown by the action.

■ Description

This section provides more details on the action.

■ Other sections

Other sections related to the group of actions described in the chapter may exist.
These include sections on interfaces and classes exposed by these actions.

2.1.1 Attributes
For each attribute, the following information is given: name, dynamic behavior, type,
and description.

The rtexprvalue element defined in a TLD is covered in this specification with the
column titled “Dynamic” that captures the dynamic behavior of an attribute. The
value can be either true or false. A false value in the dynamic column means that
only a static string value can be specified for the attribute. A true value means that a
request-time attribute value can be specified. As defined in the JSP specification, a
“request-time attribute value” can be either a Java expression, an EL expression, or a
value set by a <jsp:attribute>.

Chapter 2 Conventions 5

2.1.2 Syntax Notation

For example, in the syntax below:

<c:set var=”varName” [scope=”{page|request|session|application}”]
value=”value”/>

the attribute scope is optional. If it is specified, its value must be one of page,
request, session, or application. The default value is page.

2.2 Scoped Variables
Actions usually collaborate with their environment in implicit or explicit ways, or
both.

Implicit collaboration is often done via a well defined interface that allows nested
tags to work seamlessly with the ancestor tag exposing that interface. The JSTL
iterator tags support this mode of collaboration.

Explicit collaboration happens when a tag explicitly exposes information to its
environment. Traditionally, this has been done by exposing a scripting variable with
a value assigned from a JSP scoped attribute (which was saved by the tag handler).
Because of the expression language, the need for scripting variables is significantly
reduced. This is why all the JSTL tags expose information only as JSP scoped
attributes (no scripting variable exposed). These exported JSP scoped attributes are
referred to as scoped variables in this specification; this helps in preventing too much
overloading of the term “attribute”.

[...] What is inside the square brackets is
optional

{option1|option2|option3|...} Only one of the given options can be
selected

value The default value

6 JSTL 1.1 • November 2003

2.2.1 var and scope
The convention is to use the name var for attributes that export information. For
example, the <c:forEach> action exposes the current item of the customer collection
it is iterating over in the following way:

It is important to note that a name different than id was selected to stress the fact
that only a scoped variable (JSP scoped attribute) is exposed, without any scripting
variable.

If the scoped variable has at-end visibility (see Section 2.2.2), the convention also
establishes the attribute scope to set the scope of the scoped variable.

The scope attribute has the semantics defined in the JSP specification, and takes the
same values as the ones allowed in the <jsp:useBean> action; i.e. page, request,
session, application. If no value is specified for scope, page scope is the
default unless otherwise specified.

It is also important to note, as per the JSP specification, that specifying "session"
scope is only allowed if the page has sessions enabled.

If an action exposes more than one scoped variable, the main one uses attribute
names var and scope, while secondary ones have a suffix added for unique
identification. For example, in the <c:forEach> action, the var attribute exposes the
current item of the iteration (main variable exposed by the action), while the
varStatus attribute exposes the current status of the iteration (secondary variable).

2.2.2 Visibility
Scoped variables exported by JSTL actions are categorized as either nested or at-end.

Nested scoped variables are only visible within the body of the action and are stored
in "page" scope1. The action must create the variable according to the semantics of
PageContext.setAttribute(varName, PAGE_SCOPE), and it must remove it at
the end of the action according to the semantics of
PageContext.removeAttribute(varName, PAGE_SCOPE).2

At-end scoped variables are only visible at the end of the action. Their lifecycle is the
one associated with their associated scope.

<c:forEach var=”customer” items=”${customers}”>
Current customer is <c:out value=”${customer}”/>

</c:forEach>

1. Since nested scoped variables are always saved in page scope, no scope attribute is associated with them.

Chapter 2 Conventions 7

In this specification, scoped variables exposed by actions are considered at-end by
default. If a scoped variable is nested, it will be explicitly stated.

2.3 Static vs Dynamic Attribute Values
Except for the two exceptions described below, attribute values of JSTL actions can
always be specified dynamically (see Section 2.1.1).

The first exception to this convention is for the select attribute of XML actions.
This attribute is reserved in JSTL to specify a String literal that represents an
expression in the XPath language.

The second exception is for attributes that define the name and scope of scoped
variables (as introduced in Section 2.1.1) exported by JSTL actions.

Restricting these attributes to static values should benefit development tools,
without any impediment to page authors.

2.4 White Spaces
Following the JSP specification (as well as the XML and XSLT specifications),
whitespace characters are #x20, #x9, #xD, or #xA.

2.5 Body Content
If an action accepts a body content, an empty body is always valid, unless explicitly
stated otherwise.

If the body content is used to set the value of an attribute, then an empty body
content sets the attribute value to an empty string.

2. It is important to note that the JSP specification says that "A name should refer to a unique object at all points
in the execution, that is all the different scopes really should behave as a single name space." The JSP
specification also says that "A JSP container implementation may or may not enforce this rule explicitly due to
performance reasons". Because of this, if a scoped variable with the same name as a nested variable already
exists in a scope other than 'page', exactly what happens to that scoped variable depends on how the JSP
container has been implemented. To comply with the JSP specification, and to avoid non-portable behavior,
page authors should therefore avoid using the same name in different scopes.

8 JSTL 1.1 • November 2003

If a body content is trimmed prior to being processed by the action, it is trimmed as
defined in method trim() of the class java.lang.String.

2.6 Naming
JSTL adopts capitalization conventions of Java variables for compound words in
action and attribute names. Recommended tag prefixes are kept lowercase. Thus,
we have <sql:transaction> and <c:forEach>, as well as attributes such as
docSystemId and varDom.

In some cases, attribute names for JSTL actions carry conventional meanings. For
instance, Section 2.2.1 discussed the var and scope attibutes. Section 11.1.5
discusses the select attribute used in JSTL's XML-processing tag library.

2.7 Errors and Exceptions
All syntax errors (as defined in the syntax section of each action, as well as the
syntax of EL expressions as defined in Appendix A) must be reported at translation
time.

Constraints, as defined in the constraints section of each action, must also be
reported at translation time unless they operate on a dynamic attribute value, in
which case errors are reported at runtime.

The conversion from a String value to the expected type of an attribute is handled
according to the rules defined in the JSP specification.

Since it is hard for a page author to deal with exceptions, JSTL tries to avoid as many
exception cases as possible, without causing other problems.

For instance, if <c:forEach> were to throw an exception when given a null value for
the attribute items, it would be impossible to easily loop over a possibly missing
string array that represents check-box selection in an HTML form (retrieved with an
EL expression like ${paramValues.selections}). A better choice is to do
nothing in this case.

The conventions used in JSTL with respect to errors and exceptions are as follows:

■ scope

■ Invalid value – translation time validation error

■ var

Chapter 2 Conventions 9

■ Empty – translation time validation error

■ Dynamic attributes with a fixed set of valid String values:
■ null – use the default value

A null value can therefore be used to dynamically (e.g. by request
parameter), turn on or off special features without too much work.

■ Invalid value – throw an exception
If a value is provided but is not valid, it's likely a typo or another mistake.

■ Dynamic attributes without a fixed set of valid values:
The rules below assume that if the type of the value does not match the expected
type, the EL will have applied coercion rules to try to accomodate the input value.
Moreover, if the expected type is one of the types handled by the EL coercion
rules, the EL will in most cases coerce null to an approriate value. For instance, if
the expected type is a Number, the EL will coerce a null value to 0, if it's Boolean
it will be coerced to false.
■ null – behavior specific to the action

If this rule is applied, it’s because the EL could not coerce the null into an
appropriate default value. It is therefore up to the action to deal with the null
value and is documented in the “Null & Error Handling” section of the
action.

■ Invalid type – throw an exception
■ Invalid value – throw an exception

■ Exceptions caused by the body content:
Always propagate, possibly after handling them (e.g. <sql:transaction>).

■ Exceptions caused by the action itself:
Always propagate, possibly after handling them.

■ Exceptions caused by the EL:
Always propagate.

■ Exceptions caused by XPath:
Always propagate.

Page authors may catch an exception using <c:catch>, which exposes the exception
through its var attribute. var is removed if no exception has occurred.

When this specification requires an action to throw an exception, this exception must
be an instance of javax.servlet.jsp.JspException or a subclass. If an action
catches any exceptions that occur in its body, its tag handler must provide the caught
exception as the root cause of the JspException it re-throws.

Also, by default, JSTL actions do not catch or otherwise handle exceptions that occur
during evaluation of their body content. If they do, it is documented in their “Null &
Error Handling” or “Description” section.

10 JSTL 1.1 • November 2003

2.8 Configuration Data
Context initialization parameters (see Servlet specification) are useful to configure
the behavior of actions. For example, it is possible in JSTL to define the resource
bundle used by I18N actions via the deployment descriptor (web.xml) as follows:

In many cases, it is also useful to allow configuration data to be overridden
dynamically for a particular JSP scope (page, request, session, application) via a
scoped variable. JSTL refers to scoped variables used for that purpose as
configuration variables.

According to the JSP specification (JSP.2.8.2), a scoped variable name should refer to
a unique object at all points in the execution. This means that all the different scopes
(page, request, session, and application) that exist within a PageContext really
should behave as a single name space; setting a scoped variable in any one scope
overrides it in any of the other scopes.

Given this constraint imposed by the JSP specification, and in order to allow a
configuration variable to be set for a particular scope without affecting its settings in
any of the other scopes, JSTL provides the Config class (see Chapter 16 “Java
APIs”). The Config class transparently manipulates the name of configuration
variables so they behave as if scopes had their own private name space. Details on
the name manipulations involved are voluntarily left unspecified and are handled
transparently by the Config class. This ensures flexibility should the “scope name
space” issue be addressed in the future by the JSP specification.

When setting configuration data via the deployment descriptor, the name associated
with the context initialization parameter (e.g.
javax.servlet.jsp.jstl.fmt.localizationContext) must be used and only
String values may be specified. Configuration data that can be set both through a
context initialization parameter and configuration variables is referred to as a
configuration setting in this specification.

<web-app>
...
<context-param>
<param-name>javax.servlet.jsp.jstl.fmt.localizationContext</

param-name>
<param-value>com.acme.MyResources</param-value>

</context-param>
...

</web-app>

Chapter 2 Conventions 11

As mentioned above, application developers may access configuration data through
class Config (see Chapter 16 “Java APIs”). As a convenience, constant String
values have been defined in the Config class for each configuration setting
supported by JSTL. The values of these constants are the names of the context
intialization parameters.

Each configuration variable clearly specifies the Java data type(s) it supports. If the
type of the object used as the value of a configuration variable does not match one of
those supported by the configuration variable, conversion is performed according to
the conversion rules defined in the expression language. Setting a configuration
variable is therefore exactly the same as setting an attribute value of an action using
the EL. A failure of these conversion rules to determine an appropriate type coersion
leads to a JspException at runtime.

2.9 Default Values
It is often desirable to display a default value if the output of an action yields a null
value. This can be done in a generic way in JSTL by exporting the output of an
action via attribute var, and then displaying the value of that scoped variable with
action <c:out>.

For example:

<fmt:formatDate var=”formattedDate” value=”${reservationDate}”/>
Date: <c:out value=”${formattedDate}” default=”not specified”/>

12 JSTL 1.1 • November 2003

13

CHAPTER 3

Expression Language Overview

JSTL 1.0 introduced the notion of an expression language (EL) to make it easy for
page authors to access and manipulate application data without having to master
the complexity associated with programming languages such as Java and JavaScript.

Starting with JSP 2.0 / JSTL 1.1, the EL has become the responsibility of the JSP
specification and is now formally defined there.

This chapter provides a simple overview of the key features of the expression
language, it is therefore non-normative. Please refer to the JSP specification for the
formal definition of the EL.

3.1 Expressions and Attribute Values
The EL is invoked exclusively via the construct ${expr}. In the sample code below,
an EL expression is used to set the value of attribute test, while a second one is
used to display the title of a book.

<c:if test="${book.price <= user.preferences.spendingLimit}">
The book ${book.title} fits your budget!

</c:if>

14 JSTL 1.1 • November 2003

It is also possible for an attribute to contain more than one EL expression, mixed
with static text. For example, the following would display “Price of productName is
productPrice” for a list of products.

3.2 Accessing Application Data
An identifier in the EL refers to the JSP scoped variable returned by a call to
PageContext.findAttribute(identifier). This variable can therefore reside
in any of the four JSP scopes: page, request, session, or application. A null value is
returned if the variable does not exist in any of the scopes.

The EL also defines implicit objects to support easy access to application data that is
of interest to a page author. Implicit objects pageScope, requestScope,
sessionScope, and applicationScope provide access to the scoped variables in
each one of these JSP scopes. It is also possible to access HTTP request parameters
via the implicit objects param and paramValues. param is a Map object where
param["foo"] returns the first string value associated with request parameter foo,
while paramValues["foo"] returns an array of all string values associated with
that request parameter.

The code below displays all request parameters along with all their associated
values.

Request headers are also accessible in a similar fashion via implicit objects header
and headerValues. initParam gives access to context initialization parameters,
while cookie exposes cookies received in the request.

<c:forEach var=”product" items=”${products}”>
<c:out value=”Price of ${product.name} is ${product.price}”/>

</c:forEach>

<c:forEach var="aParam" items="${paramValues}">
param: ${aParam.key}
values:
<c:forEach var="aValue" items="${aParam.value}">

${aValue}
</c:forEach>

</c:forEach>

Chapter 3 Expression Language Overview 15

Implicit object pageContext is also provided for advanced usage, giving access to
all properties associated with the PageContext of a JSP page such as the
HttpServletRequest, ServletContext, and HttpSession objects and their
properties.

3.3 Nested Properties and Accessing
Collections
The application data that a page author manipulates in a JSP page usually consists of
objects that comply with the JavaBeans specification, or that represent collections
such as lists, maps, or arrays.

The EL recognizes the importance of these data structures and provides two
operators, “.” and “[]”, to make it easy to access the data encapsulated in these
objects.

The "." operator can be used as a convenient shorthand for property access when the
property name follows the conventions of Java identifiers. For example:

The “[]” operator allows for more generalized access, as shown below:

Dear ${user.firstName}
from ${user.address.city},
thanks for visiting our website!

<%-- “productDir” is a Map object containing the description of
products, “preferences” is a Map object containing the
preferences of a user --%>

product:
${productDir[product.custId]}
shipping preference:
${user.preferences[“shipping”]}

16 JSTL 1.1 • November 2003

3.4 Operators
The operators supported in the EL handle the most common data manipulations.
The standard relational, arithmetic, and logical operators are provided in the EL. A
very useful “empty” operator is also provided.

The six standard relational operators are supported: == (or eq), != (or ne), < (or lt),
> (or gt), <= (or le), >= (or ge). The second versions of the last 4 operators are made
available to avoid having to use entity references in XML syntax.

Arithmetic operators consist of addition (+), substraction (-), multiplication (*),
division (/ or div), and remainder/modulo (% or mod).

Logical operators consist of && (or and), || (or or), and ! (or not).

The empty operator is a prefix operator that can used to determine if a value is null
or empty. For example:

3.5 Automatic Type Conversion
The application data a page author has access to may not always exactly match the
type expected by the attribute of an action or the type expected for an EL operator.
The EL supports an exhaustive set of rules to coerce the type of the resulting value
to the expected type.

For example, if request attributes beginValue and endValue are Integer objects,
they will automatically be coerced to ints when used with the <c:forEach> action.

<c:if test=”${empty param.name}”>
Please specify your name.

</c:if>

<c:forEach begin=”${requestScope.beginValue}”
end=”${requestScope.endValue}”>

...
</c:forEach>

Chapter 3 Expression Language Overview 17

In the example below, the parameter String value param.start is coerced to a
number and is then added to 10 to yield an int value for attribute begin.

3.6 Default Values
JSP pages are mostly used in presentation. Experience suggests that it is important to
be able to provide as good a presentation as possible, even when simple errors occur
in the page. To satisfy this requirement, the EL provides default values rather than
errors when failure to evaluate an expression is deemed “recoverable”. Default
values are type-correct values that allow a page to easily recover from these error
conditions.

In the following example, the expression ”${user.address.city}” evaluates to
null rather than throwing a NullPointerException if there is no address
associated with the user object. This way, a sensible default value can be displayed
without having to worry about exceptions being thrown by the JSP page.

In the following example, the addition operator considers the value of
param.start to be 0 if it is not defined, therefore evaluating the expression to 10.

<c:forEach items=”${products}” begin=”${param.start + 10}”>
...

</c:forEach>

City: <c:out value=”${user.address.city}” default=”N/A”/>

<c:forEach items=”${products}” begin=”${param.start + 10}”>
...

</c:forEach>

18 JSTL 1.1 • November 2003

19

CHAPTER 4

General-Purpose Actions
core tag library

This chapter introduces general purpose actions to support the manipulation of
scoped variables as well as to handle error conditions.

4.1 Overview
The <c:out> action provides a capability similar to JSP expressions such as <%=
scripting-language-expression %> or ${el-expression}. For example:

By default, <c:out> converts the characters <, >, ', ", & to their corresponding
character entity codes (e.g. < is converted to <). If these characters are not
converted, the page may not be rendered properly by the browser, and it could also
open the door for cross-site scripting attacks (e.g. someone could post JavaScript
code for closing the window to an online discussion forum). The conversion may be
bypassed by specifying false to the escapeXml attribute.

The <c:out> action also supports the notion of default values for cases where the
value of an EL expression is null. In the example below, the value “unknown” will
be displayed if the property city is not accessible.

You have <c:out value="${sessionScope.user.itemCount}"/> items.

<c:out value="${customer.address.city}" default="unknown"/>

20 JSTL 1.1 • November 2003

The action <c:set> is used to set the value of a JSP scoped attribute as follows:

It is also possible to set the value of a scoped variable (JSP scoped attribute) from the
body of the <c:set> action. This solves the problem associated with not being able to
set an attribute value from another action. In the past, a tag developer would often
implement extra "attributes as tags" so the value of these attributes could be set from
other actions.

For example, the action <acme:att1> was created only to support setting the value of
att1 of the parent tag <acme:atag> from other actions .

With the <c:set> tag, this can be handled without requiring the extra <acme:att1>
tag.

In the preceding example, the <c:set> action sets the value of the att1 scoped
variable to the output of the <acme:foo> action. <c:set> – like all JSTL actions that
create scoped attributes – creates scoped attributes in “page” scope by default.

<c:set> may also be used to set the property of a JavaBeans object, or add or set a
specific element in a java.util.Map object. For example:.

<c:set var=”foo” value=”value”/>

<acme:atag>
<acme:att1>

<acme:foo>mumbojumbo</acme:foo>
</acme:att1>

</acme:atag>

<c:set var=”att1”>
<acme:foo>mumbojumbo</acme:foo>

</c:set>
<acme:atag att1=”${att1}”/>

<!-- set property in JavaBeans object -->
<c:set target="${cust.address}" property="city" value="${city}"/>

<!-- set/add element in Map object -->
<c:set target="${preferences}" property="color"

value="${param.color}"/>

Chapter 4 General-Purpose Actions 21

Action <c:remove> is the natural companion to <c:set>, allowing the explicit
removal of scoped variables. For example:

Finally, the <c:catch> action provides a complement to the JSP error page
mechanism. It is meant to allow page authors to recover gracefully from error
conditions that they can control. For example:

<c:remove var="cachedResult" scope="application"/>

<c:catch var=”exception”>
<!-- Execution we can recover from if exception occurs -->
...

</c:catch>
<c:if test=”${exception != null}”>
Sorry. Processing could not be performed because...

</c:if>

22 JSTL 1.1 • November 2003

4.2 <c:out>
Evaluates an expression and outputs the result of the evaluation to the current
JspWriter object.

Syntax

Without a body
<c:out value=”value” [escapeXml=”{true|false}”]

[default=”defaultValue”] />

With a body
<c:out value=”value” [escapeXml=”{true|false}”]>

default value
</c:out>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

Null & Error Handling

■ If value is null, the default value takes over. If no default value is specified, it
itself defaults to an empty string.

Description

The expression to be evaluated is specified via the value attribute.

Name Dyn Type Description

value true Object Expression to be evaluated.

escapeXml true boolean

Deterrmines whether characters <,>,&,’,” in the
resulting string should be converted to their
corresponding character entity codes. Default value is
true.

default true Object Default value if the resulting value is null.

Chapter 4 General-Purpose Actions 23

If the result of the evaluation is not a java.io.Reader object, then it is coerced to
a String and is subsequently emitted into the current JspWriter object.

If the result of the evaluation is a java.io.Reader object, data is first read from the
Reader object and then written into the current JspWriter object. This special
processing associated with Reader objects should help improve performance when
large amount of data must be read and then displayed to the page.

If escapeXml is true, the following character conversions are applied:

The default value can be specified either via the default attribute (using the syntax
without a body), or within the body of the tag (using the syntax with a body). It
defaults to an empty string.

Character Character Entity Code

< <

> >

& &

‘ '

‘’ "

24 JSTL 1.1 • November 2003

4.3 <c:set>
Sets the value of a scoped variable or a property of a target object.

Syntax

Syntax 1: Set the value of a scoped variable using attribute value
<c:set value=”value”

var=”varName” [scope=”{page|request|session|application}”]/>

Syntax 2: Set the value of a scoped variable using body content
<c:set var=”varName” [scope=”{page|request|session|application}”]>

body content
</c:set>

Syntax 3: Set a property of a target object using attribute value
<c:set value=”value”

target=”target” property=”propertyName”/>

Syntax 4: Set a property of a target object using body content
<c:set target=”target” property=”propertyName”>

body content
</c:set>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

Name Dyn Type Description

value true Object Expression to be evaluated.

var false String
Name of the exported scoped variable to hold the value
specified in the action. The type of the scoped variable is
whatever type the value expression evaluates to.

scope false String Scope for var.

target true Object
Target object whose property will be set. Must evaluate to
a JavaBeans object with setter property property, or to a
java.util.Map object.

property true String Name of the property to be set in the target object.

Chapter 4 General-Purpose Actions 25

Null & Error Handling

■ Syntax 3 and 4: Throw an exception under any of the following conditions:
■ target evaluates to null
■ target is not a java.util.Map object and is not a JavaBeans object that

supports setting property property.

■ If value is null
■ Syntax 1: the scoped variable defined by var and scope is removed.

■ If attribute scope is specified, the scoped variable is removed according to
the semantics of PageContext.removeAttribute(varName, scope).

■ Otherwise, the scoped variable is removed according to the semantics of
PageContext.removeAttribute(varName).

■ Syntax 3:
■ if target is a Map, remove the entry with the key identified by property.
■ if target is a JavaBean component, set the property to null.

Description

Syntax 1 and 2 set the value of a the scoped variable identified by var and scope.

Syntax 3 and 4:
■ If the target expression evaluates to a java.util.Map object, set the value of the

element associated with the key identified by property. If the element does not
exist, add it to the Map object.

■ Otherwise, set the value of the property property of the JavaBeans object
target. If the type of the value to be set does not match the type of the bean
property, conversion is performed according to the conversion rules defined in
the expression language (see Section A.7). With the exception of a null value,
setting a bean property with <c:set> is therefore exactly the same as setting an
attribute value of an action using the EL. A failure of these conversion rules to
determine an appropriate type coersion leads to a JspException at runtime.

26 JSTL 1.1 • November 2003

4.4 <c:remove>
Removes a scoped variable.

Syntax

<c:remove var=”varName”
[scope=”{page|request|session|application}”]/>

Attributes

Description

The <c:remove> action removes a scoped variable.

If attribute scope is not specified, the scoped variable is removed according to the
semantics of PageContext.removeAttribute(varName). If attribute scope is
specified, the scoped variable is removed according to the semantics of
PageContext.removeAttribute(varName, scope).

Name Dynamic Type Description

var false String Name of the scoped variable to be removed.

scope false String Scope for var.

Chapter 4 General-Purpose Actions 27

4.5 <c:catch>
Catches a java.lang.Throwable thrown by any of its nested actions.

Syntax

<c:catch [var=”varName”]>

nested actions

</c:catch>

Body Content

JSP. The body content is processed by the JSP container and the result is written to
the current JspWriter.

Attributes

Description

The <c:catch> action allows page authors to handle errors from any action in a
uniform fashion, and allows for error handling for multiple actions at once.

<c:catch> provides page authors with granular error handling: Actions that are of
central importance to a page should not be encapsulated in a <c:catch>, so their
exceptions will propagate to an error page, whereas actions with secondary
importance to the page should be wrapped in a <c:catch>, so they never cause the
error page mechanism to be invoked.

The exception thrown is stored in the scoped variable identified by var, which
always has page scope. If no exception occurred, the scoped variable identified by
var is removed if it existed.

If var is missing, the exception is simply caught and not saved.

Name Dynamic Type Description

var false String
Name of the exported scoped variable for the
exception thrown from a nested action. The type of the
scoped variable is the type of the exception thrown.

28 JSTL 1.1 • November 2003

29

CHAPTER 5

Conditional Actions
core tag library

The output of a JSP page is often conditional on the value of dynamic application
data. A simple scriptlet with an if statement can be used in such situations, but this
forces a page author to use a scripting language whose syntax may be troublesome
(e.g. one may forget the curly braces).

The JSTL conditional actions make it easy to do conditional processing in a JSP page.

5.1 Overview
The JSTL conditional actions are designed to support the two most common usage
patterns associated with conditional processing: simple conditional execution and
mutually exclusive conditional execution.

A simple conditional execution action evaluates its body content only if the test
condition associated with it is true. In the following example, a special greeting is
displayed only if this is a user’s first visit to the site:

<c:if test="${user.visitCount == 1}">
This is your first visit. Welcome to the site!

</c:if>

30 JSTL 1.1 • November 2003

With mutually exclusive conditional execution, only one among a number of possible
alternative actions gets its body content evaluated.

For example, the following sample code shows how the text rendered depends on a
user’s membership category.

An if/then/else statement can be easily achieved as follows:

<c:choose>
<c:when test="${user.category == 'trial'}”>

...
</c:when>
<c:when test="${user.category == 'member'}”>

...
</c:when>
<c:when test="${user.category == 'vip'}”>

...
</c:when>
<c:otherwise>

...
</c:otherwise>

</c:choose>

<c:choose>
<c:when test="${count == 0}”>

No records matched your selection.
</c:when>
<c:otherwise>

${count} records matched your selection.
</c:otherwise>

</c:choose>

Chapter 5 Conditional Actions 31

5.2 Custom Logic Actions
It is important to note that the <c:if> and <c:when> actions have different semantics.
A <c:if> action will always process its body content if its test condition evaluates to
true. A <c:when> action will process its body content if it is the first one in a series
of <c:when> actions whose test condition evaluates to true.

These semantic differences are enforced by the fact that only <c:when> actions can
be used within the context of a mutually exclusive conditional execution (<c:choose>
action). This clean separation of behavior also impacts the way custom logic actions
(i.e. actions who render their bodies depending on the result of a test condition)
should be designed. Ideally, the result associated with the evaluation of a custom
logic action should be usable both in the context of a simple conditional execution,
as well as in a mutually exclusive conditional execution.

The proper way to enable this is by simply having the custom logic action export the
result of the test condition as a scoped variable. This boolean result can then be used
as the test condition of a <c:when> action.

In the example below, the fictitious custom action <acme:fullMoon> tells whether or
not a page is accessed during a full moon. The behavior of an if/then/else
statement is made possible by having the result of the <acme:fullMoon> action
exposed as a boolean scoped variable that is then used as the test condition in the
<c:when> action.

To facilitate the implementation of conditional actions where the boolean result is
exposed as a JSP scoped variable, class ConditionalTagSupport (see Chapter 16
“Java APIs”) has been defined in this specification.

 <acme:fullMoon var="isFullMoon"/>
 <c:choose>
 <c:when test="${isFullMoon}">
 ...

 </c:when>
 <c:otherwise>
 ...

 </c:otherwise>
 </c:choose>

32 JSTL 1.1 • November 2003

5.3 <c:if>
Evaluates its body content if the expression specified with the test attribute is true.

Syntax

Syntax 1: Without body content
<c:if test=”testCondition”

var=”varName” [scope=”{page|request|session|application}”]/>

Syntax 2: With body content
<c:if test=”testCondition”

[var=”varName”] [scope=”{page|request|session|application}”]>

body content

</c:if>

Body Content

JSP. If the test condition evaluates to true, the JSP container processes the body
content and then writes it to the current JspWriter.

Attributes

Constraints

■ If scope is specified, var must also be specified.

Description

If the test condition evaluates to true, the body content is evaluated by the JSP
container and the result is output to the current JspWriter.

Name Dyn Type Description

test true boolean
The test condition that determines whether or
not the body content should be processed.

var false String
Name of the exported scoped variable for the
resulting value of the test condition. The type
of the scoped variable is Boolean.

scope false String Scope for var.

Chapter 5 Conditional Actions 33

5.4 <c:choose>
Provides the context for mutually exclusive conditional execution.

Syntax

<c:choose>
body content (<when> and <otherwise> subtags)

</c:choose>

Body Content

JSP. The body content is processed by the JSP container (at most one of the nested
actions will be processed) and written to the current JspWriter.

Attributes

None.

Constraints

■ The body of the <c:choose> action can only contain:

■ White spaces

May appear anywhere around the <c:when> and <c:otherwise> subtags.

■ 1 or more <c:when> actions

Must all appear before <c:otherwise>

■ 0 or 1 <c:otherwise> action

Must be the last action nested within <c:choose>

Description

The <c:choose> action processes the body of the first <c:when> action whose test
condition evaluates to true. If none of the test conditions of nested <c:when> actions
evaluates to true, then the body of an <c:otherwise> action is processed, if present.

34 JSTL 1.1 • November 2003

5.5 <c:when>
Represents an alternative within a <c:choose> action.

Syntax

<c:when test=”testCondition”>
body content

</c:when>

Body Content

JSP. If this is the first <c:when> action to evaluate to true within <c:choose>, the JSP
container processes the body content and then writes it to the current JspWriter.

Attributes

Constraints

■ Must have <c:choose> as an immediate parent.
■ Must appear before an <c:otherwise> action that has the same parent.

Description

Within a <c:choose> action, the body content of the first <c:when> action whose test
condition evaluates to true is evaluated by the JSP container, and the result is output
to the current JspWriter.

Name Dynamic Type Description

test true boolean
The test condition that determines whether or not the
body content should be processed.

Chapter 5 Conditional Actions 35

5.6 <c:otherwise>
Represents the last alternative within a <c:choose> action.

Syntax

<c:otherwise>
conditional block

</c:otherwise>

Body Content

JSP. If no <c:when> action nested within <c:choose> evaluates to true, the JSP
container processes the body content and then writes it to the current JspWriter.

Attributes

None.

Constraints

■ Must have <c:choose> as an immediate parent.
■ Must be the last nested action within <c:choose>.

Description

Within a <c:choose> action, if none of the nested <c:when> test conditions evaluates
to true, then the body content of the <c:otherwise> action is evaluated by the JSP
container, and the result is output to the current JspWriter.

36 JSTL 1.1 • November 2003

37

CHAPTER 6

Iterator Actions
core tag library

Iterating over a collection of objects is a common occurrence in a JSP page. Just as
with conditional processing, a simple scriptlet can be used in such situations.
However, this once again forces a page author to be knowledgeable in many aspects
of the Java programming language (how to iterate on various collection types,
having to cast the returned object into the proper type, proper use of the curly
braces, etc.).

The JSTL iterator actions simplify iterating over a wide variety of collections of
objects.

6.1 Overview
The <c:forEach> action repeats its nested body content over the collection of objects
specified by the items attribute. For example, the JSP code below creates an HTML
table with one column that shows the default display value of each item in the
collection.

The <c:forEach> action has the following features:

■ Supports all standard J2SE™ platform collection types.

A page author therefore does not have to worry about the specific type of the
collection of objects to iterate over (see Section 6.1.1).

<table>
<c:forEach var=”customer” items=”${customers}”>

<tr><td>${customer}</td></tr>
</c:forEach>

</table>

38 JSTL 1.1 • November 2003

■ Exports an object that holds the current item of the iteration.

Normally, each object exposed by <c:forEach> is an item of the underlying
collection being iterated over. There are two exceptions to this to facilitate access
to the information contained in arrays of primitive types, as well as in Map objects
(see Section 6.1.2).

■ Exports an object that holds information about the status of the iteration (see
Section 6.1.3).

■ Supports range attributes to iterate over a subset of the original collection (see
Section 6.1.4).

■ Exposes an interface as well as a base implementation class.

Developers can easily implement collaborating subtags as well as their own
iteration tags (see Section 6.1.5).

<c:forEach> is the base iteration action in JSTL. It handles the most common
iteration cases conveniently. Other iteration actions are also provided in the tag
library to support specific, specialized functionality not handled by <c:forEach> (e.g.
<c:forTokens> (Section 6.3) and <x:forEach> (Section 12.6)). Developers can also
easily extend the behavior of this base iteration action to customize it according to
an application's specific needs.

6.1.1 Collections of Objects to Iterate Over
A large number of collection types are supported by <c:forEach>, including all
implementations of java.util.Collection (includes List, LinkedList,
ArrayList, Vector, Stack, Set), and java.util.Map (includes HashMap,
Hashtable, Properties, Provider, Attributes).

Arrays of objects as well as arrays of primitive types (e.g. int) are also supported.
For arrays of primitive types, the current item for the iteration is automatically
wrapped with its standard wrapper class (e.g. Integer for int, Float for float,
etc.).

Implementations of java.util.Iterator and java.util.Enumeration are
supported as well but these must be used with caution. Iterator and
Enumeration objects are not resettable so they should not be used within more
than one iteration tag.

Deprecated: Finally, java.lang.String objects can be iterated over if the string
represents a list of comma separated values (e.g.
“Monday,Tuesday,Wednesday,Thursday,Friday”).1

Absent from the list of supported types is java.sql.ResultSet (which includes
javax.sql.RowSet). The reason for this is that the SQL actions described in
Section 10.1 use the javax.servlet.jsp.jstl.sql.Result interface to access
1. The proper way to process strings of tokens is via <c:forTokens> or via functions split and join.

Chapter 6 Iterator Actions 39

the data returned from an SQL query. Class
javax.servlet.jsp.jstl.sql.ResultSupport (see Chapter 16 “Java APIs")
allows business logic developers to easily convert a ResultSet object into a
javax.servlet.jsp.jstl.sql.Result object, making life much easier for a
page author that needs to manipulate the data returned from a SQL query.

6.1.2 Map
If the items attribute is of type java.util.Map, then the current item will be of
type java.util.Map.Entry, which has the following two properties:

■ key - the key under which this item is stored in the underlying Map
■ value - the value that corresponds to this key

The following example uses <c:forEach> to iterate over the values of a Hashtable:

6.1.3 Iteration Status
<c:forEach> also exposes information relative to the iteration taking place. The
example below creates an HTML table with the first column containing the position
of the item in the collection, and the second containing the name of the product.

See Chapter 16 “Java APIs" for details on the LoopTagStatus interface exposed by
the varStatus attribute.

<c:forEach var="entry" items="${myHashtable}">
Next element is ${entry.value}/>

</c:forEach>

<table>
<c:forEach var=”product” items=”${products}”

varStatus=”status”>
<tr>

<td>${status.count}”</td>
<td>${product.name}”</td>

</tr>
</c:forEach>

</table>

40 JSTL 1.1 • November 2003

6.1.4 Range Attributes
A set of range attributes is available to iterate over a subset of the collection of items.
The begin and end indices can be specified, along with a step. If the items
attribute is not specified, then the value of the current item is set to the integer value
of the current index. In this example, i would take values from 100 to 110
(inclusive).

6.1.5 Tag Collaboration
Custom actions give developers the power to provide added functionality to a JSP
application without requiring the page author to use Java code. In this example, an
item of the iteration is processed differently depending upon whether it is an odd or
even element.

If this type of processing is common, it could be worth providing custom actions
that yield simpler code, as shown below.

<c:forEach var=”i” begin=”100” end=”110”>
${i}

</c:forEach>

<c:forEach var="product" items="${products}" varStatus="status">
<c:choose>

<c:when test="${status.count % 2 == 0}">
even item

</c:when>
<c:otherwise>

odd item
</c:otherwise>

</c:choose>
</c:forEach>

<c:forEach var="product" items="${products}">
<acme:even>

even item
</acme:even>
<acme:odd>

odd item
</acme:odd>

</c:forEach>

Chapter 6 Iterator Actions 41

In order to make this possible, custom actions like <acme:odd> and <acme:even>
leverage the fact that <c:forEach> supports implicit collaboration via the interface
LoopTag (see Chapter 16 “Java APIs").

The fact that <c:forEach> exposes an interface also means that other actions with
iterative behavior can be developed using the same interface and will collaborate in
the same manner with nested tags. Class LoopTagSupport (see Chapter 16 “Java
APIs") provides a solid base for doing this.

42 JSTL 1.1 • November 2003

6.2 <c:forEach>
Repeats its nested body content over a collection of objects, or repeats it a fixed
number of times.

Syntax

Syntax 1: Iterate over a collection of objects
<c:forEach[var=”varName”] items=”collection”

[varStatus=”varStatusName”]
[begin=”begin”] [end=”end”] [step=”step”]>

body content

</c:forEach>

Syntax 2: Iterate a fixed number of times
<c:forEach [var=”varName”]

[varStatus=”varStatusName”]
begin=”begin” end=”end” [step=”step”]>

body content

</c:forEach>

Body Content

JSP. As long as there are items to iterate over, the body content is processed by the
JSP container and written to the current JspWriter.

Chapter 6 Iterator Actions 43

Attributes

Constraints

■ If specified, begin must be >= 0.
■ If end is specified and it is less than begin, the loop is simply not executed.
■ If specified, step must be >= 1

Null & Error Handling

■ If items is null, it is treated as an empty collection, i.e., no iteration is performed.

Name Dyn Type Description

var false String

Name of the exported scoped variable for the
current item of the iteration. This scoped
variable has nested visibility. Its type depends
on the object of the underlying collection.

items true

Any of the supported
types described in
Section
“Description” below.

Collection of items to iterate over.

varStatus false String

Name of the exported scoped variable for the
status of the iteration. Object exported is of
type
javax.servlet.jsp.jstl.core.LoopTagS
tatus. This scoped variable has nested
visibility.

begin true int

If items specified:
Iteration begins at the item located at the
specified index. First item of the collection has
index 0.
If items not specified:
Iteration begins with index set at the value
specified.

end true int

If items specified:
Iteration ends at the item located at the
specified index (inclusive).
If items not specified:
Iteration ends when index reaches the value
specified.

step true int
Iteration will only process every step items of
the collection, starting with the first one.

44 JSTL 1.1 • November 2003

Description

If begin is greater than or equal to the size of items, no iteration is performed.

Collections Supported & Current Item

The data types listed below must be supported for items. With syntax 1, each object
exposed via the var attribute is of the type of the object in the underlying collection,
except for arrays of primitive types and maps (see below). With syntax 2, the object
exported is of type Integer.

■ Arrays

This includes arrays of objects as well as arrays of primitive types. For arrays of
primitive types, the current item for the iteration is automatically wrapped with
its standard wrapper class (e.g. Integer for int, Float for float, etc.)

Elements are processed in their indexing order.

■ Implementation of java.util.Collection.

An Iterator object is obtained from the collection via the iterator() method,
and the items of the collection are processed in the order returned by that
Iterator object.

■ Implementation of java.util.Iterator.

Items of the collection are processed in the order returned by the Iterator
object.

■ Implementation of java.util.Enumeration.

Items of the collection are processed in the order returned by the Enumeration
object.

■ Implementation of java.util.Map

The object exposed via the var attribute is of type Map.Entry.

A Set view of the mappings is obtained from the Map via the entrySet()
method, from which an Iterator object is obtained via the iterator()
method. The items of the collection are processed in the order returned by that
Iterator object.

■ String

The string represents a list of comma separated values, where the comma
character is the token delimiter. Tokens are processed in their sequential order in
the string.

Chapter 6 Iterator Actions 45

6.3 <c:forTokens>
Iterates over tokens, separated by the supplied delimiters.

Syntax

<c:forTokens items="stringOfTokens" delims="delimiters"
[var="varName"]
[varStatus="varStatusName"]
[begin="begin"] [end="end"] [step="step"]>

body content

</c:forTokens>

Body Content

JSP. As long as there are items to iterate over, the body content is processed by the
JSP container and written to the current JspWriter.

Attributes

Name Dynamic Type Description

var false String
Name of the exported scoped variable for the
current item of the iteration. This scoped
variable has nested visibility.

items true String String of tokens to iterate over.

delims true String
The set of delimiters (the characters that
separate the tokens in the string).

varStatus false String

Name of the exported scoped variable for the
status of the iteration. Object exported is of
type
javax.servlet.jsp.jstl.core.LoopTag
Status. This scoped variable has nested
visibility.

begin true int
Iteration begins at the token located at the
specified index. First token has index 0.

end true int
Iteration ends at the token located at the
specified index (inclusive).

step true int
Iteration will only process every step tokens
of the string, starting with the first one.

46 JSTL 1.1 • November 2003

Constraints

■ If specified, begin must be >= 0.
■ If end is specified and it is less than begin, the loop is simply not executed.
■ If specified, step must be >= 1

Null & Error Handling

■ If items is null, it is treated as an empty collection, i.e., no iteration is performed.
■ If delims is null, items is treated as a single monolithic token. Thus, when

delims is null, <c:forTokens> iterates exactly zero (if items is also null) or one
time.

Description

The tokens of the string are retrieved using an instance of
java.util.StringTokenizer with arguments items (the string to be tokenized)
and delims (the delimiters).

Delimiter characters separate tokens. A token is a maximal sequence of consecutive
characters that are not delimiters.

47

CHAPTER 7

URL Related Actions
core tag library

Linking, importing, and redirecting to URL resources are features often needed in
JSP pages. Since dealing with URLs can often be tricky, JSTL offers a comprehensive
suite of URL-related actions to simplify these tasks.

7.1 Hypertext Links
By using the HTML <A> element, a page author can set a hypertext link as follows:

Register

If the link refers to a local resource and session tracking is enabled, it is necessary to
rewrite the URL so session tracking can be used as a fallback, should cookies be
disabled at the client.

Morevoer, if query string parameters are added to the URL, it is important that they
be properly URL encoded. URL encoding refers to the process of encoding special
characters in a string, according to the rules defined in RFC 2396. For example, a
space must be encoded in a URL string as a '+':

http://acme.com/app/choose?country=Dominican+Republic

48 JSTL 1.1 • November 2003

As shown in the following example, the combination of the <c:url> and <c:param>
actions takes care of all issues related to URL rewriting and encoding: <c:url>
rewrites a URL if necessary, and <c:param> transparently encodes query string
parameters (both name and value).

Another important feature of <c:url> is that it transparently prepends the context
path to context-relative URLs. Assuming a context path of "/foo", the following
example

yields the URL /foo/ads/logo.html.

7.2 Importing Resources
There is a wide variety of resources that a page author might be interested in
including and/or processing within a JSP page. For instance, the example below
shows how the content of the README file at the FTP site of acme.com could be
included within the page.

In the JSP specification, a <jsp:include> action provides for the inclusion of static
and dynamic resources located in the same context as the current page. This is a very
convenient feature that is widely used by page authors.

However, <jsp:include> falls short in flexibility when page authors need to get
access to resources that reside outside of the web application. In many situations,
page authors have the need to import the content of Internet resources specified via
an absolute URL. Moreover, as sites grow in size, they may have to be implemented
as a set of web applications where importing resources across web applications is a
requirement.

<c:url value="http://acme.com/exec/register" var="myUrl">
<c:param name="name" value="${param.name}"/>
<c:param name="country" value="${param.country}"/>

</c:url>
<a href=’<c:out value="${myUrl}"/>’>Register

<c:url value="/ads/logo.html"/>

<c:import url=”ftp://ftp.acme.com/README”/>

Chapter 7 URL Related Actions 49

<jsp:include> also falls short in efficiency when the content of the imported resource
is used as the source for a companion process/transformation action, because
unnecessary buffering occurs. In the example below, the <acme:transform> action
uses the content of the included resource as the input of its transformation.
<jsp:include> reads the content of the response, writes it to the body content of the
enclosing <acme:transform>, which then re-reads the exact same content. It would
be more efficient if <acme:transform> could access the input source directly and
avoid the buffering involved in the body content of <acme:transform>.

The main motivation behind <c:import> is to address these shortcomings by
providing a simple, straightforward mechanism to access resources that can be
specified via a URL. If accessing a resource requires specifying more arguments,
then a protocol specific action (e.g. an <http> action) should be used for that
purpose. JSTL does not currently address these protocol-specific elements but may
do so in future releases.

7.2.1 URL
The url attribute is used to specify the URL of the resource to import. It can either
be an absolute URL (i.e. one that starts with a protocol followed by a colon), a
relative URL used to access a resource within the same context, or a relative URL
used to access a resource within a foreign context. The three different types of URL
are shown in the sample code below.

7.2.2 Exporting an object: String or Reader
By default, the content of an imported resource is included inline into the JSP page.

<acme:transform>
<jsp:include page=”/exec/employeesList”/>

</acme:transform>

<%-- import a resource with an absolute URL --%>
<c:import url=”http://acme.com/exec/customers?country=Japan/>

<%-- import a resource with a relative URL - same context --%>
<c:import url=”/copyright.html”/>

<%-- import a resource with a relative URL - foreign context --%>
<c:import url=”/logo.html” context=”/master”/>

50 JSTL 1.1 • November 2003

It is also possible to make the content of the resource available in two different ways:
as a String object (attribute var), or as a Reader object (attribute varReader).
Process or Transform tags can then access the resource's content through that
exported object as shown in the following example.

Exporting the resource as a String object caches its content and makes it reusable.

If the imported content is large, some performance benefits may be achieved by
exporting it as a Reader object since the content can be accessed directly without
any buffering. However, the performance benefits are not guaranteed since the
reader’s support is implementation dependent. It is also important to note that the
varReader scoped variable has nested visibility; it can only be accessed within the
body content of <c:import>.

7.2.3 URL Encoding
Just as with <c:url>, <c:param> can be nested within <c:import> to encode query
string parameters.

7.2.4 Networking Properties
If the web container executes behind a firewall, some absolute URL resources may
be inaccessible when using <c:import>. To provide access to these resources, the
JVM of the container should be started with the proper networking properties (e.g.
proxyHost, proxyPort). More details can be found in the Java 2 SDK, Standard
Edition Documentation (Networking Features — Networking Properties).

<%-- Export the content of the URL resource as a String --%>
<c:import url=”http://acme.com/exec/customers?country=USA"

var="customers"/>
<acme:notify in=”${customers}”/>

<%-- Export the content of the URL resource as a Reader --%>
<c:import url=”http://acme.com/exec/customers?country=USA"

varReader="customers">
<acme:notify in=”${customers}”/>

</c:import>

Chapter 7 URL Related Actions 51

7.3 HTTP Redirect
<c:redirect> completes the arsenal of URL related actions to support an HTTP
redirect to a specific URL. For example:

<c:redirect url="http://acme.com/register"/>

52 JSTL 1.1 • November 2003

7.4 <c:import>
Imports the content of a URL-based resource.

Syntax

Syntax 1: Resource content inlined or exported as a String object
<c:import url=”url” [context=”context”]

[var=”varName”] [scope=”{page|request|session|application}”]
[charEncoding=”charEncoding”]>

optional body content for <c:param> subtags

</c:import>

Syntax 2: Resource content exported as a Reader object
<c:import url=”url” [context=”context”]

varReader=”varReaderName”
[charEncoding=”charEncoding”]>

body content where varReader is consumed by another action

</c:import>

Body Content

JSP. The body content is processed by the JSP container and the result is written to
the current JspWriter.

Attributes

Name Dynamic Type Description

url true String The URL of the resource to import.

context true String
Name of the context when accessing a relative
URL resource that belongs to a foreign
context.

var false String
Name of the exported scoped variable for the
resource’s content. The type of the scoped
variable is String.

Chapter 7 URL Related Actions 53

Null & Error Handling

■ If url is null, empty, or invalid, a JspException is thrown.
■ If charEncoding is null or empty, it is considered missing.
■ For internal resources:

a) If a RequestDispatcher cannot be found for the resource, throw a
JspException with the resource path included in the message.

b) Otherwise, if the RequestDispatcher.include() method throws an
IOException or RuntimeException, throw a JspException with the
caught exception as the root cause.

c) Otherwise, if the RequestDispatcher.include() method throws a
ServletException, look for a root cause.
■ If there's a root cause, throw a JspException with the root cause message

included in the message and the original root cause as the JspException
root cause.

■ Otherwise, same as b).
d) Otherwise, if the resource invoked through RequestDispatcher.include()

method sets a response status code other than 2xx (i.e. 200-299, the range of
success codes in the HTTP response codes), throw a JspException with the
path and status code in the message.

■ For external resources
■ If the URLConnection class throws an IOException or a

RuntimeException, throw a JspException with the message from the
original exception included in the message and the original exception as the
root cause.

■ For an HttpURLConnection, if the response status code is other than 2xx (i.e.
200-299, the range of success codes in the HTTP response codes), throw a
JspException with the path and status code in the message.

Description

Using syntax 1, the content of the resource is by default written to the current
JspWriter. If var is specified, the content of the resource is instead exposed as a
String object.

scope false String Scope for var.

charEncoding true String
Character encoding of the content at the input
resource.

varReader false String
Name of the exported scoped variable for the
resource’s content. The type of the scoped
variable is Reader.

Name Dynamic Type Description

54 JSTL 1.1 • November 2003

Using syntax 2, the content of the resource is exported as a Reader object. The use
of the varReader attribute comes with some restrictions.

It is the responsibility of the <c:import> tag handler to ensure that if it exports a
Reader, this Reader is properly closed by the time the end of the page is reached1.
Because of this requirement, JSTL defines the exported Reader as having nested
visibility: it may not currently be accessed after the end-tag for the <c:import>
action2. Implementations that use JSP 1.2 tag-extension API will likely need to
implement TryCatchFinally with their <c:import> tag handlers and close the
exported Reader in doFinally().

It is also illegal to use nested <c:param> tags with syntax 2. Since the exposed
Reader must be immediately available to the action's body, the connection to the
resource must be established within the start element of the action. It is therefore
impossible for nested <c:param> actions to modify the URL of the resource to be
accessed, thus their illegality with syntax 2. In such a situation, <c:url> may be used
to build a URL with query string parameters. <c:import> will remove any session id
information if necessary (see Section 7.5).

Character Encoding

<c:import> exposes a String or Reader object, both of which are sequences of text
characters. It is possible to specify the character encoding of the input resource via
the charEncoding attribute. The values supported for charEncoding are the same
as the ones supported by the constructor of the Java class InputStreamReader.

If the character encoding is not specified, the following rules apply:

■ If URLConnection.getContentType() has a non-null result, the character set
is retrieved from URLConnection.getContentType() by parsing this
method's result according to RFC 2045 (section 5.1).

■ If this method's result does not include a character set, or if the character set
causes InputStreamReader(InputStream in, String charsetName) to
throw an UnsupportedEncodingException, then use ISO-8859-1 (which is the
default value of charset for the contentType attribute of the JSP page
directive).

1. If the responsibility was left to the consumer tag, this could lead to resource leaks (e.g. connection left open,
memory space for buffers) until garbage collection is activated. This is because a consumer tag might not close
the Reader, or because the page author might remove the consumer tag while leaving inadvertantly the
<c:import> tag in the page.

2. This restriction could eventually be lifted when the JSP spec supports the notion of page events that actions
could register to. On a pageExit event, an <c:import> tag would then simply release its resources if it had
not already been done, removing the requirement for nested visibility.

Chapter 7 URL Related Actions 55

Note that the charEncoding attribute should normally only be required when
accessing absolute URL resources where the protocol is not HTTP, and where the
encoding is not ISO-8859-1.

Also, when dealing with relative URLs and the HTTP protocol, if the target resource
declares a content encoding but proceeds to write a character invalid in that
encoding, the treatment of that character is undefined.

Relative and Absolute URLs

The exact semantics of the <c:import> tag depends on what type of URL is being
accessed.

Relative URL – same context

This is processed in the exact same way as the include action of the JSP specification
(<jsp:include>). The resource belongs to the same web application as the including
page and it is specified as a relative URL.

As specified in the JSP specification, a relative URL may either be a context-relative
path, or a page-relative path. A context-relative path is a path that starts with a "/". It
is to be interpreted as relative to the application to which the JSP page belongs. A
page-relative path is a path that does not start with a "/". It is to be interpreted as
relative to the current JSP page, as defined by the rules of inclusion of the
<jsp:include> action in the JSP specification.

The semantics of importing a resource specified with a relative URL in the same
context are the same as an include performed by a RequestDispatcher as defined
in the Servlet specification. This means that the whole environment of the importing
page is available to the target resource (including request and session attributes, as
well as request parameters of the importing page).

Relative URL – foreign context

The resource belongs to a foreign context (web application) hosted under the same
container as the importing page. The context name for the resource is specified via
attribute context.

The relative URL must be context-relative (i.e. must start with a "/") since the
including page does not belong to the same context. Similarly, the context name
must also start with a "/".

The semantics of importing a resource specified with a relative URL in a foreign
context are the same as an include performed by a RequestDispatcher on a
foreign context as defined in the Servlet specification. This means that only the
request environment of the importing page is available to the target resource.

56 JSTL 1.1 • November 2003

It is important to note that importing resources in foreign contexts may not work in
all containers. A security conscious environment may not allow access to foreign
contexts. As a workaround, a foreign context resource can also be accessed using an
absolute URL. However, it is more efficient to use a relative URL because the
resource is then accessed using RequestDispatcher defined by the Servlet API.

Relative URL – query parameter aggregation rules

The query parameter aggregation rules work the same way they do with
<jsp:include>; the original parameters are augmented with the new parameters, with
new values taking precedence over existing values when applicable. The scope of
the new parameters is the import call; the new parameters (and values) will not
apply after the import. The behavior is therefore the same as the one defined for the
include() method of RequestDispatcher in the Servlet specification.

Absolute URL

Absolute URLs are retrieved as defined by the java.net.URL and
java.net.URLConnection classes. The <c:import> action therefore supports at a
minimum the protocols offered in the J2SE 1.2 platform for absolute URLs. More
protocols can be available to a web application, but this will depend on the the class
libraries made available to the web application by the platform the container runs
on.

When using an absolute URL to import a resource, none of the current execution
environment (e.g. request and session attributes) is made available to the target
resource, even if that absolute URL resolves to the same host and context path.
Therefore, the request parameters of the importing page are not propagated to the
target absolute URL.

When importing an external resource using the HTTP protocol, <c:import> behaves
according to the semantics of a GET request sent via the
java.net.HttpURLConnection class, with setFollowRedirects set to true.

Chapter 7 URL Related Actions 57

7.5 <c:url>
Builds a URL with the proper rewriting rules applied.

Syntax

Syntax 1: Without body content
<c:url value=”value” [context=”context”]

[var=”varName”] [scope=”{page|request|session|application}”]/>

Syntax 2: With body content to specify query string parameters
<c:url value=”value” [context=”context”]

[var=”varName”] [scope=”{page|request|session|application}”]>

<c:param> subtags

</c:url>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

Description

<c:url> processes a URL and rewrites it if necessary. Only relative URLs are
rewritten. Absolute URLs are not rewritten to prevent situations where an external
URL could be rewritten and expose the session ID. A consequence is that if a page
author wants session tracking, only relative URLs must be used with <c:url> to link
to local resources.

Name Dynamic Type Description

value true String URL to be processed.

context true String
Name of the context when specifying a relative URL
resource that belongs to a foreign context.

var false String
Name of the exported scoped variable for the
processed url. The type of the scoped variable is
String.

scope false String Scope for var.

58 JSTL 1.1 • November 2003

The rewriting must be performed by calling method encodeURL() of the Servlet
API.

If the URL contains characters that should be encoded (e.g. space), it is the user's
responsibility to encode them.

The URL must be either an absolute URL starting with a scheme (e.g. "http://
server/context/page.jsp") or a relative URL as defined by JSP 1.2 in JSP.2.2.1
"Relative URL Specification". As a consequence, an implementation must prepend
the context path to a URL that starts with a slash (e.g. "/page2.jsp") so that such
URLs can be properly interpreted by a client browser.

Specifying a URL in a foreign context is possible through the context attribute. The
URL specified must must start with a / (since this is a context-relative URL). The
context name must also start with a / (since this is a standard way to identify a
context).

Because the URL built by this action may include session information as a path
parameter, it may fail if used with RequestDispatcher of the Servlet API. The
consumer of the rewritten URL should therefore remove the session ID information
prior to calling RequestDispatcher. This situation is properly handled in
<c:import>.

By default, the result of the URL processing is written to the current JspWriter. It
is also possible to export the result as a JSP scoped variable defined via the var and
scope attributes.

<c:param> subtags can also be specified within the body of <c:url> for adding to the
URL query string parameters, which will be properly encoded if necessary.

Chapter 7 URL Related Actions 59

7.6 <c:redirect>
Sends an HTTP redirect to the client.

Syntax

Syntax 1: Without body content
<c:redirect url=”value” [context=”context”]/>

Syntax 2: With body content to specify query string parameters
<c:redirect url=”value” [context=”context”]/>

<c:param> subtags

</c:redirect>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

Description

This action sends an HTTP redirect response to the client and aborts the processing
of the page by returning SKIP_PAGE from doEndTag().

The URL must be either an absolute URL starting with a scheme (e.g. "http://
server/context/page.jsp") or a relative URL as defined by JSP 1.2 in JSP.2.2.1
"Relative URL Specification". As a consequence, an implementation must prepend
the context path to a URL that starts with a slash (e.g. "/page2.jsp") if the behavior is
implemented using the HttpServletResponse.sendRedirect() method.

Redirecting to a resource in a foreign context is possible through the context
attribute. The URL specified must must start with a "/" (since this is a context-
relative URL). The context name must also start with a "/" (since this is a standard
way to identify a context).

Name Dyn Type Description

url true String The URL of the resource to redirect to.

context true String
Name of the context when redirecting to a relative URL
resource that belongs to a foreign context.

60 JSTL 1.1 • November 2003

<c:redirect> follows the same rewriting rules as defined for <c:url>.

Chapter 7 URL Related Actions 61

7.7 <c:param>
Adds request parameters to a URL. Nested action of <c:import>, <c:url>,
<c:redirect>.

Syntax

Syntax 1: Parameter value specified in attribute “value”
<c:param name=”name” value=”value”/>

Syntax 2: Parameter value specified in the body content
<c:param name=”name”>

parameter value
</c:param>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

Null & Error Handling

■ If name is null or empty, no action is performed. It is not an error.
■ If value is null, it is processed as an empty value.

Description

Nested action of <c:import>, <c:url>, <c:redirect> to add request parameters to a
URL. <c:param> also URL encodes both name and value.

Name Dynamic Type Description

name true String Name of the query string parameter.

value true String Value of the parameter.

62 JSTL 1.1 • November 2003

One might argue that this is redundant given that a URL can be constructed to
directly specify the query string parameters. For example:

is the same as:

It is indeed redundant, but is consistent with <jsp:include>, which supports nested
<jsp:param> sub-elements. Moreover, it has been designed such that the attributes
name and value are automatically URL encoded.

<c:import url=”/exec/doIt”>
<c:param name=”action” value=”register”/>

</c:import>

<c:import url=”/exec/doIt?action=register”/>

63

CHAPTER 8

Internationalization (i18n) Actions
I18n-capable formatting tag library

With the explosion of application development based on web technologies, and the
deployment of such applications on the Internet, applications must be able to adapt
to the languages and formatting conventions of their clients. This means that page
authors must be able to tailor page content according to the client’s language and
cultural formatting conventions. For example, the number 345987.246 should be
formatted as 345 987,246 for France, 345.987,246 for Germany, and 345,987.246 for the
U.S.

The process of designing an application (or page content) so that it can be adapted to
various languages and regions without requiring any engineering changes is known
as internationalization, or i18n for short. Once a web application has been
internationalized, it can be adapted for a number of regions or languages by adding
locale-specific components and text. This process is known as localization.

There are two approaches to internationalizing a web application:

■ Provide a version of the JSP pages in each of the target locales and have a
controller servlet dispatch the request to the appropriate page (depending on the
requested locale). This approach is useful if large amounts of data on a page or an
entire web application need to be internationalized.

■ Isolate any locale-sensitive data on a page (such as error messages, string literals,
or button labels) into resource bundles, and access the data via i18n actions, so
that the corresponding translated message is fetched automatically and inserted
into the page.

The JSTL i18n-capable formatting actions support either approach: They assist page
authors with creating internationalized page content that can be localized into any
locale available in the JSP container (this addresses the second approach), and allow
various data elements such as numbers, currencies, dates and times to be formatted
and parsed in a locale-sensitive or customized manner (this may be used in either
approach).

64 JSTL 1.1 • November 2003

JSTL’s i18n actions are covered in this chapter. The formatting actions are covered in
Chapter 9.

8.1 Overview
There are three key concepts associated with internationalization: locale, resource
bundle, and basename.

A locale represents a specific geographical, political, or cultural region. A locale is
identified by a language code, along with an optional country code1.

■ Language code

The language code is the lower-case two-letter code as defined by ISO-639 (e.g.
“ca” for Catalan, “zh” for Chinese). The full list of these codes can be found at a
number of sites, such as:
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

■ Country code

The country code is the upper-case two-letter code as defined by ISO-3166 (e.g.
“IT” for Italy, “CR” for Costa Rica). The full list of these codes can be found at a
number of sites, such as:
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

Note that the semantics of locales in JSTL are the same as the ones defined by the
class java.util.Locale. A consequence of this is that, as of J2SE 1.4, new
language codes defined in ISO 639 (e.g. he, yi, id) will be returned as the old codes
(e.g. iw, ji, in). See the documentation of the java.util.Locale class for more
details.

A resource bundle contains locale-specific objects. Each message in a resource bundle
is associated with a key. Since the set of messages contained in a resource bundle can
be localized for many locales, the resource bundles that translate the same set of
messages are identified by the same basename. A specific resource bundle is therefore
uniquely identified by combining its basename with a locale.

For instance, a web application could define the registration resource bundles with
basename Registration to contain the messages associated with the registration
portion of the application. Assuming that French and English are the only languages
supported by the application, there will be two resource bundles:
Registration_fr (French language) and Registration_en (English language).
Depending on the locale associated with the client request, the key “greeting” could
be mapped to the message “Bonjour” (French) or “Hello” (English).

1. A variant code may also be specified, although rarely used.

Chapter 8 Internationalization (i18n) Actions 65

8.1.1 <fmt:message>
It is possible to internationalize the JSP pages of a web application simply by using
the <fmt:message> action as shown below:

In this case, <fmt:message> leverages the default i18n localization context, making it
extremely simple for a page author to internationalize JSP pages.

<fmt:message> also supports compound messages, i.e. messages that contain one or
more variables. Parameter values for these variables may be supplied via one or
more <fmt:param> subtags (one for each parameter value). This procedure is
referred to as parametric replacement.

Depending on the locale, this example could print the following messages:

8.2 I18n Localization Context
I18n actions use an i18n localization context to localize their data. An i18n
localization context contains two pieces of information: a resource bundle and the
locale for which the resource bundle was found.

An i18n action determine its i18n localization context in one of several ways, which
are described in order of precedence:

■ <fmt:message> bundle attribute

If attribute bundle is specified in <fmt:message>, the i18n localization context
associated with it is used for localization.

■ <fmt:bundle> action

<fmt:message key="greeting"/>

<fmt:message key="athletesRegistered">
<fmt:param>
<fmt:formatNumber value=”${athletesCount}”/>

</fmt:param>
</fmt:message>

 french: Il y a 10 582 athletes enregistres.
english: There are 10,582 athletes registered.

66 JSTL 1.1 • November 2003

If <fmt:message> actions are nested inside a <fmt:bundle> action, the i18n
localization context of the enclosing <fmt:bundle> action is used for localization.
The <fmt:bundle> action determines the resource bundle of its i18n localization
context according to the resource bundle determination algorithm in Section 8.3,
using the basename attribute as the resource bundle basename.

■ I18n default localization context

The i18n localization context whose resource bundle is to be used for localization
is specified via the javax.servlet.jsp.jstl.fmt.localizationContext
configuration setting (see Section 8.11.3). If the configuration setting is of type
LocalizationContext (see Chapter 16 “Java APIs”) its resource bundle
component is used for localization. Otherwise, the configuration setting is of type
String, and the action establishes its own i18n localization context whose
resource bundle component is determined according to the resource bundle
determination algorithm in Section 8.3, using the configuration setting as the
resource bundle basename.

The example below shows how the various localization contexts can be established
to define the resource bundle used for localization.

8.2.1 Preferred Locales
If the resource bundle of an i18n localization context needs to be determined, it is
retrieved from the web application’s resources according to the algorithm described
in section Section 8.3. This algorithm requires two pieces of information: the
basename of the resource bundle (as described in the previous section) and the
preferred locales.

The method for setting the preferred locales is characterized as either application-
based or browser-based.

<%-- Use configuration setting --%>
<fmt:message key="Welcome" />

<fmt:setBundle basename="Errors" var="errorBundle" />
<fmt:bundle basename="Greetings">
<%-- Localization context established by

parent <fmt:bundle> tag --%>
<fmt:message key="Welcome" />
<%-- Localization context established by attribute bundle --%>
<fmt:message key="WrongPassword" bundle="${errorBundle}" />

</fmt:bundle>

Chapter 8 Internationalization (i18n) Actions 67

Application-based locale setting has priority over browser-based locale setting. In this
mode, the locale is set via the javax.servlet.jsp.jstl.fmt.locale
configuration setting (see Section 8.11.1). Setting the locale this way is useful in
situations where an application lets its users pick their preferred locale and then sets
the scoped variable accordingly. This may also be useful in the case where a client’s
preferred locale is retrieved from a database and installed for the page using the
<fmt:setLocale> action.

The <fmt:setLocale> action may be used to set the
javax.servlet.jsp.jstl.fmt.locale configuration variable as follows:

In the browser-based locale setting, the client determines via its browser settings
which locale(s) should be used by the web application. The action retrieves the
client’s locale preferences by calling ServletRequest.getLocales() on the
incoming request. This returns a list of the locales (in order of preference) that the
client wants to use.

Whether application- or browser-based locale setting is used, an ordered list of
preferred locales is fed into the algorithm described in section Section 8.3 to
determine the resource bundle for an i18n localization context.

<fmt:setLocale value=”en_US” />

68 JSTL 1.1 • November 2003

8.3 Determinining the Resource Bundle for
an i18n Localization Context
Given a basename and an ordered set of preferred locales, the resource bundle for an
i18n localization context is determined according to the algorithm described in this
section.

Tthis algorithm is also exposed as a general convenience method in the
LocaleSupport class (see Chapter 16 “Java APIs”) so that it may be used by any
tag handler implementation that needs to produce localized messages. For example,
this is useful for exception messages that are intended directly for user consumption
on an error page.

8.3.1 Resource Bundle Lookup
Localization in JSTL is based on the same mechanisms offered in the J2SE platform.
Resource bundles contain locale-specific objects, and when an i18n action requires a
locale-specific resource, it simply loads it from the appropriate resource bundle.

The algorithm of Section 8.3.2 describes how the proper resource bundle is
determined. This algorithm calls for a resource bundle lookup, where an attempt is
made at fetching a resource bundle associated with a specific basename and locale.

JSTL leverages the semantics of the java.util.ResourceBundle method

getBundle(String basename, java.util.Locale locale)

for resource bundle lookup, with one important modification.

As stated in the documentation for ResourceBundle, a resource bundle lookup
searches for classes and properties files with various suffixes on the basis of:

1. The specified locale
2. The current default locale as returned by Locale.getDefault()
3. The root resource bundle (basename)

In JSTL, the search is limited to the first level; i.e. the specified locale. Steps 2 and 3
are removed so that other locales may be considered before applying the JSTL
fallback mechanism described in Section 8.3.2. Only if no fallback mechanism exists,
or the fallback mechanism fails to determine a resource bundle, is the root resource
bundle considered.

Resource bundles are therefore searched in the following order:

Chapter 8 Internationalization (i18n) Actions 69

basename + "_" + language + "_" + country + "_" + variant
basename + "_" + language + "_" + country
basename + "_" + language

8.3.2 Resource Bundle Determination Algorithm
Notes:

■ When there are multiple preferred locales, they are processed in the order they
were returned by ServletRequest.getLocales().

■ The algorithm stops as soon as a resource bundle has been selected for the
localization context.

Step 1: Find a match within the ordered set of preferred locales

A resource bundle lookup (see Section 8.3.1) is performed for each one of the
preferred locales until a match is found. If a match is found, the locale that led to the
match and the matched resource bundle are stored in the i18n localization context.

Step 2: Find a match with the fallback locale

A resource bundle lookup (see Section 8.3.1) is performed for the fallback locale
specified in the javax.servlet.jsp.jstl.fmt.fallbackLocale configuration
setting. If a match is found, the fallback locale and the matched resource bundle are
stored in the i18n localization context.

If no match is found following the above two steps, an attempt is made to load the
root resource bundle with the given basename. If such a resource bundle exists, it is
used as the resource bundle of an i18n localization context that does not have any
locale. Otherwise, the established i18n localization context contains neither a
resource bundle nor a locale. It is then up to the i18n action relying on this i18n
localization context for the localization of its data to take a proper corrective action.

It is important to note that this algorithm gives higher priority to a language match
over an exact match that would have occurred further down the list of preferred
locales. For example, if the browser-based locale settings are “en” and “fr_CA”, with
resource bundles “Messages_en” and “Messages_fr_CA”, the Messages_en bundle
will be selected as the resource bundle for the localization context.

The definition of a fallback locale along with its associated resource bundles is the
only portable way a web application can ensure the proper localization of all its
internationalized pages. The algorithm of this section never considers the default
locale associated with the Java runtime of the container because this would result in
a non-portable behavior.

70 JSTL 1.1 • November 2003

The behavior is implementation-specific if the set of available resource bundles
changes during execution of the page. Implementations may thus cache whatever
information they deem necessary to improve the performance of the algorithm
presented in this section.

8.3.3 Examples
The following examples demonstrate how the resource bundle is determined for an
i18n localization context.

Example 1

Settings
Basename: Resources
Ordered preferred locales: en_GB, fr_CA
Fallback locale: fr_CA
Resource bundles: Resources_en, Resources_fr_CA

Algorithm Trace
Step 1: Find a match within the ordered set of preferred locales

en_GB match with Resources_en

Result
Resource bundle selected: Resources_en
Locale: en_GB

Example 2

Settings
Basename: Resources
Ordered preferred locales: de, fr
Fallback locale: en
Resource bundles: Resources_en

Algorithm Trace
Step 1: Find a match within the ordered set of preferred locales

de no match
fr no match

Step 2: Find a match with the fallback locale
en exact match with Resources_en

Result
Resource bundle selected: Resources_en
Locale: en

Chapter 8 Internationalization (i18n) Actions 71

Example 3

Settings
Basename: Resources
Ordered preferred locales: ja, en_GB, en_US, en_CA, fr
Fallback locale: en
Resource bundles: Resources_en, Resources_fr, Resources_en_US

Algorithm Trace
Step 1: Find a match within the ordered set of preferred locales

ja no match
en_GB match with Resources_en

Result
Resource bundle selected: Resources_en
Locale: en_GB

Example 4

Settings
Basename: Resources
Ordered preferred locales: fr, sv
Fallback locale: en
Resource bundles: Resources_fr_CA, Resources_sv, Resources_en

Algorithm Trace
Step 1: Find a match within the ordered set of preferred locales

fr no match
sv match with Resources_sv

Result
Resource bundle selected: Resources_sv
Locale: sv

This example shows that whenever possible, a resource bundle for a specific
language and country (Resources_fr_CA) should be backed by a resource bundle
covering just the language (Resources_fr). If the country-specific differences of a
language are too significant for there to be a language-only resource bundle, it is
expected that clients will specify both a language and a country as their preferred
language, in which case an exact resource bundle match will be found.

72 JSTL 1.1 • November 2003

8.4 Response Encoding
Any i18n action that establishes a localization context is responsible for setting the
response’s locale of its page, unless the localization context that was established
does not have any locale. This is done by calling method
ServletResponse.setLocale() with the locale of the localization context.
Unless a response character encoding has been explicitly defined by other JSP
elements (or by direct calls to the Servlet API), calling setLocale() also sets the
character encoding for the response (see the JSP and Servlet specifications for
details).

This assumes that the response is buffered with a big enough buffer size, since
ServletResponse.setLocale() must be called before
ServletResponse.getWriter() in order for the specified locale to affect the
construction of the writer.

More specifically, the response’s setLocale() method is always called by the
<fmt:setLocale> action (see Section 8.5). In addition, it is called by the following
actions:

■ Any <fmt:bundle> (see Section 8.6) and <fmt:setBundle> (see Section 8.7) action.
■ Any <fmt:message> action that establishes an i18n localization context
■ Any formatting action that establishes a formatting locale on its own (see

Section 9.3).

After an action has called ServletResponse.setLocale(), if a session exists and
has not been invalidated, it must determine the character encoding associated with
the response locale (by calling ServletResponse.getCharacterEncoding())
and store it in the scoped variable
javax.servlet.jsp.jstl.fmt.request.charset in session scope. This
attribute may be used by the <fmt:requestEncoding> action (see Section 8.10) in a
page invoked by a form included in the response to set the request charset to the
same as the response charset. This makes it possible for the container to decode the
form parameter values properly, since browsers typically encode form field values
using the response’s charset.

The rules related to the setting of an HTTP response character encoding, Content-
Language header, and Content-Type header are clearly defined in the Servlet
specification. To avoid any ambiguity, the JSTL and JSP specifications define
behavior related to a response's locale and character encoding exclusively in terms of
Servlet API calls.

Chapter 8 Internationalization (i18n) Actions 73

It is therefore important to note that, as defined in the Servlet spec, a call to
ServletResponse.setLocale() modifies the character encoding of the response
only if it has not already been set explicitely by calls to
ServletResponse.setContentType() (with CHARSET specified) or
ServletResponse.setCharacterEncoding().

Page authors should consult the JSP specification to understand how page directives
related to locale and character encoding setting translate into Servlet API calls, and
how they impact the final response settings.

74 JSTL 1.1 • November 2003

8.5 <fmt:setLocale>
Stores the specified locale in the javax.servlet.jsp.jstl.fmt.locale
configuration variable.

Syntax

<fmt:setLocale value=”locale”
[variant=”variant”]
[scope=”{page|request|session|application}”]/>

Body Content

Empty.

Attributes

Null & Error Handling

■ If value is null or empty, use the runtime default locale.

Description

Name Dynamic Type Description

value true
String or

java.util.Locale

A String value is interpreted as the
printable representation of a locale, which
must contain a two-letter (lower-case)
language code (as defined by ISO-639),
and may contain a two-letter (upper-case)
country code (as defined by ISO-3166).
Language and country codes must be
separated by hyphen (’-’) or underscore
(’_’).

variant true String
Vendor- or browser-specific variant.
See the java.util.Locale javadocs for
more information on variants.

scope false String Scope of the locale configuration variable.

Chapter 8 Internationalization (i18n) Actions 75

The <fmt:setLocale> action stores the locale specified by the value attribute in the
javax.servlet.jsp.jstl.fmt.locale configuration variable in the scope
given by the scope attribute. If value is of type java.util.Locale, variant is
ignored.

As a result of using this action, browser-based locale setting capabilities are
disabled. This means that if this action is used, it should be declared at the
beginning of a page, before any other i18n-capable formatting actions.

76 JSTL 1.1 • November 2003

8.6 <fmt:bundle>
Creates an i18n localization context to be used by its body content.

Syntax

<fmt:bundle basename=”basename”
[prefix=”prefix”]>

body content

</fmt:bundle>

Body Content

JSP. The JSP container processes the body content and then writes it to the current
JspWriter. The action ignores the body content.

Attributes

Null & Error Handling

■ If basename is null or empty, or a resource bundle cannot be found, the null
resource bundle is stored in the i18n localization context.

Description

The <fmt:bundle> action creates an i18n localization context and loads its resource
bundle into that context. The name of the resource bundle is specified with the
basename attribute.

Name Dynamic Type Description

basename true String

Resource bundle base name. This is the bundle’s
fully-qualified resource name, which has the same
form as a fully-qualified class name, that is, it uses
"." as the package component separator and does not
have any file type (such as ".class" or ".properties")
suffix.

prefix true String
Prefix to be prepended to the value of the message
key of any nested <fmt:message> action.

Chapter 8 Internationalization (i18n) Actions 77

The specific resource bundle that is loaded is determined according to the algorithm
presented in Section 8.3.2.

The scope of the i18n localization context is limited to the action’s body content.

The prefix attribute is provided as a convenience for very long message key
names. Its value is prepended to the value of the message key of any nested
<fmt:message> actions.

For example, using the prefix attribute, the key names in:

may be abbreviated to:

<fmt:bundle basename="Labels">
<fmt:message key="com.acme.labels.firstName"/>
<fmt:message key="com.acme.labels.lastName"/>

</fmt:bundle>

<fmt:bundle basename="Labels" prefix="com.acme.labels.">
<fmt:message key="firstName"/>
<fmt:message key="lastName"/>

</fmt:bundle>

78 JSTL 1.1 • November 2003

8.7 <fmt:setBundle>
Creates an i18n localization context and stores it in the scoped variable or the
javax.servlet.jsp.jstl.fmt.localizationContext configuration variable.

Syntax

<fmt:setBundle basename=”basename”
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Body Content

Empty.

Attributes

Null & Error Handling

■ If basename is null or empty, or a resource bundle cannot be found, the null
resource bundle is stored in the i18n localization context.

Name Dynamic Type Description

basename true String

Resource bundle base name. This is the bundle’s
fully-qualified resource name, which has the same
form as a fully-qualified class name, that is, it uses
"." as the package component separator and does not
have any file type (such as ".class" or ".properties")
suffix.

var false String

Name of the exported scoped variable which stores
the i18n localization context of type
javax.servlet.jsp.jstl.fmt.LocalizationC
ontext.

scope false String
Scope of var or the localization context
configuration variable.

Chapter 8 Internationalization (i18n) Actions 79

Description

The <fmt:setBundle> action creates an i18n localization context and loads its
resource bundle into that context. The name of the resource bundle is specified with
the basename attribute.

The specific resource bundle that is loaded is determined according to the algorithm
presented in Section 8.3.2.

The i18n localization context is stored in the scoped variable whose name is given by
var. If var is not specified, it is stored in the
javax.servlet.jsp.jstl.fmt.localizationContext configuration variable,
thereby making it the new default i18n localization context in the given scope.

80 JSTL 1.1 • November 2003

8.8 <fmt:message>
Looks up a localized message in a resource bundle.

Syntax

Syntax 1: without body content
<fmt:message key=”messageKey”

[bundle=”resourceBundle”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Syntax 2: with a body to specify message parameters
<fmt:message key=”messageKey”

 [bundle=”resourceBundle”]
[var=”varName”]
[scope=”{page|request|session|application}”]>

<fmt:param> subtags

</fmt:message>

Syntax 3: with a body to specify key and optional message parameters
<fmt:message [bundle=”resourceBundle”]

[var=”varName”]
[scope=”{page|request|session|application}”]>

key
optional <fmt:param> subtags

</fmt:message>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Chapter 8 Internationalization (i18n) Actions 81

Attributes

Constraints

■ If scope is specified, var must also be specified.

Null & Error Handling

■ If key is null or empty, the message is processed as if undefined; that is, an error
message of the form "??????" is produced.

■ If the i18n localization context that this action determines does not have any
resource bundle, an error message of the form “???<key>???” is produced

Description

The <fmt:message> action looks up the localized message corresponding to the
given message key.

The message key may be specified via the key attribute or from the tag’s body
content. If this action is nested inside a <fmt:bundle> action, and the parent
<fmt:bundle> action contains a prefix attribute, the specified prefix is prepended
to the message key.

<fmt:message> uses the resource bundle of the i18n localization context determined
according to Section 8.2.

If the given key is not found in the resource bundle, or the i18n localization context
does not contain any resource bundle, the result of the lookup is an error message of
the form "???<key>???" (where <key> is the name of the undefined message key).

If the message corresponding to the given key is compound, that is, contains one or
more variables, it may be supplied with parameter values for these variables via one
or more <fmt:param> subtags (one for each parameter value). This procedure is
referred to as parametric replacement. Parametric replacement takes place in the order
of the <fmt:param> subtags.

Name Dyn Type Description

key true String Message key to be looked up.

bundle true LocalizationContext
Localization context in whose resource
bundle the message key is looked up.

var false String
Name of the exported scoped variable
which stores the localized message.

scope false String Scope of var.

82 JSTL 1.1 • November 2003

In the presence of one or more <fmt:param> subtags, the message is supplied to the
java.text.MessageFormat method applyPattern(), and the values of the
<fmt:param> tags are collected in an Object[] and supplied to the
java.text.MessageFormat method format(). The locale of the
java.text.MessageFormat is set to the appropriate localization context locale
before applyPattern() is called. If the localization context does not have any
locale, the locale of the java.text.MessageFormat is set to the locale returned by
the formatting locale lookup algorithm of Section 9.3, except that the available
formatting locales are given as the intersection of the number- and date- formatting
locales. If this algorithm does not yield any locale, the locale of the
java.text.MessageFormat is set to the runtime's default locale.

If the message is compound and no <fmt:param> subtags are specified, it is left
unmodified (that is, java.text.MessageFormat is not used).

The <fmt:message> action outputs its result to the current JspWriter object, unless
the var attribute is specified, in which case the result is stored in the named JSP
attribute.

Chapter 8 Internationalization (i18n) Actions 83

8.9 <fmt:param>
Supplies a single parameter for parametric replacement to a containing
<fmt:message> (see Section 8.8) action.

Syntax

Syntax 1: value specified via attribute “value”
<fmt:param value=”messageParameter”/>

Syntax 2: value specified via body content
<fmt:param>

body content
</fmt:param>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

Constraints

■ Must be nested inside a <fmt:message> action.

Description

The <fmt:param> action supplies a single parameter for parametric replacement to
the compound message given by its parent <fmt:message> action.

Name Dynamic Type Description

value true Object Argument used for parametric replacement.

84 JSTL 1.1 • November 2003

Parametric replacement takes place in the order of the <fmt:param> tags. The
semantics of the replacement are defined as in the class
java.text.MessageFormat:

the compound message given by the parent <fmt:message> action is used as the
argument to the applyPattern() method of a java.text.MessageFormat
instance, and the values of the <fmt:param> tags are collected in an Object[] and
supplied to that instance's format() method.

The argument value may be specified via the value attribute or inline via the tag’s
body content.

Chapter 8 Internationalization (i18n) Actions 85

8.10 <fmt:requestEncoding>
Sets the request’s character encoding.

Syntax

<fmt:requestEncoding [value=”charsetName”]/>

Body Content

Empty.

Attributes

Description

The <fmt:requestEncoding> action may be used to set the request’s character
encoding, in order to be able to correctly decode request parameter values whose
encoding is different from ISO-8859-1.

This action is needed because most browsers do not follow the HTTP specification
and fail to include a Content-Type header in their requests.

More specifically, the purpose of the <fmt:requestEncoding> action is to set the
request encoding to be the same as the encoding used for the response containing
the form that invokes this page.

This action calls the setCharacterEncoding() method on the servlet request with
the character encoding name specified in the value attribute. It must be used before
any parameters are retrieved, either explicitly or through the use of an EL
expression.

If the character encoding of the request parameters is not known in advance (since
the locale and thus character encoding of the page that generated the form collecting
the parameter values was determined dynamically), the value attribute must not be
specified. In this case, the <fmt:requestEncoding> action first checks if there is a
charset defined in the request Content-Type header. If not, it uses the character

Name Dynamic Type Description

value true String
Name of character encoding to be applied when
decoding request parameters.

86 JSTL 1.1 • November 2003

encoding from the javax.servlet.jsp.jstl.fmt.request.charset scoped
variable which is searched in session scope. If this scoped variable is not found, the
default character encoding (ISO-8859-1) is used.

Chapter 8 Internationalization (i18n) Actions 87

8.11 Configuration Settings
This section describes the i18n-related configuration settings. Refer to Section 2.8 for
more information on how JSTL processes configuration data.

8.11.1 Locale

Specifies the locale to be used by the i18n-capable formatting actions, thereby
disabling browser-based locales. A String value is interpreted as defined in action
<fmt:setLocale> (see Section 8.5).

8.11.2 Fallback Locale

Specifies the fallback locale to be used by the i18n-capable formatting actions if none
of the preferred match any of the available locales. A String value is interpreted as
defined in action <fmt:setLocale> (see Section 8.5).

Variable name javax.servlet.jsp.jstl.fmt.locale

Java Constant Config.FMT_LOCALE

Type String or java.util.Locale

Set by <fmt:setLocale>

Used by

<fmt:bundle>, <fmt:setBundle>, <fmt:message>,
<fmt:formatNumber>, <fmt:parseNumber>,
<fmt:formatDate>, <fmt:parseDate>

Variable name javax.servlet.jsp.jstl.fmt.fallbackLocale

Java Constant Config.FMT_FALLBACK_LOCALE

Type String or java.util.Locale

Set by

Used by

<fmt:bundle>, <fmt:setBundle>, <fmt:message>,
<fmt:formatNumber>, <fmt:parseNumber>,
<fmt:formatDate>, <fmt:parseDate>

88 JSTL 1.1 • November 2003

8.11.3 I18n Localization Context

Specifies the default i18n localization context to be used by the i18n-capable
formatting actions. A String value is interpreted as a resource bundle basename.

Variable name javax.servlet.jsp.jstl.fmt.localizationContext

Java Constant Config.FMT_LOCALIZATION_CONTEXT

Type
String or
javax.servlet.jsp.jstl.fmt.LocalizationContext

Set by <fmt:setBundle>

Used by

<fmt:message>, <fmt:formatNumber>,
<fmt:parseNumber>, <fmt:formatDate>,
<fmt:parseDate>

89

CHAPTER 9

Formatting Actions
I18n-capable formatting tag library

The JSTL formatting actions allow various data elements in a JSP page, such as
numbers, dates and times, to be formatted and parsed in a locale-sensitive or
customized manner.

9.1 Overview

9.1.1 Formatting Numbers, Currencies, and
Percentages
The <fmt:formatNumber> action allows page authors to format numbers, currencies,
and percentages according to the client’s cultural formatting conventions.

For example, the output of:

varies with the page’s locale (given in parentheses), as follows:

SFr. 9’876’543.21 (fr_CH)
$9,876,543.21 (en_US)

<fmt:formatNumber value="9876543.21" type="currency"/>

90 JSTL 1.1 • November 2003

While the previous example uses the default formatting pattern (for currencies) of
the page’s locale, it is also possible to specify a customized formatting pattern. For
example, a pattern of ".000" will cause any numeric value formatted with it to be
represented with 3 fraction digits, adding trailing zeros if necessary, so that:

will output "12.300".

Likewise, a pattern of "#,#00.0#" specifies that any numeric value formatted with it
will be represented with a minimum of 2 integer digits, 1 fraction digit, and a
maximum of 2 fraction digits, with every 3 integer digits grouped. Applied to
"123456.7891", as in:

the formatted output will be "123,456.79" (note that rounding is handled
automatically).

The following example formats a numeric value as a currency, stores it in a scoped
variable, parses it back in, and outputs the parsed result (which is the same as the
original numeric value):

A similar sequence of actions could have been used to retrieve a currency-formatted
value from a database, parse its numeric value, perform an arithmetic operation on
it, reformat it as a currency, and store it back to the database.

9.1.2 Formatting Dates and Times
The <fmt:formatDate> action allows page authors to format dates and times
according to the client’s cultural formatting conventions.

For example, assuming a current date of Oct 22, 2001 and a current time of
4:05:53PM, the following action:

<fmt:formatNumber value="12.3" pattern=".000"/>

<fmt:formatNumber value="123456.7891" pattern="#,#00.0#"/>

<fmt:formatNumber value="123456789" type="currency" var="cur"/>
<fmt:parseNumber value="${cur}" type="currency"/>

<jsp:useBean id="now" class="java.util.Date" />
<fmt:formatDate value=”${now}” timeStyle="long"
dateStyle="long"/>

Chapter 9 Formatting Actions 91

will output

October 22, 2001 4:05:53 PM PDT

for the U.S. and

22 octobre 2001 16:05:53 GMT-07:0

for the French locale.

Page authors may also specify a customized formatting style for their dates and
times. Assuming the same current date and time as in the above example, this
action:

will output

22.10.01

for the U.S. locale.

Time information on a page may be tailored to the preferred time zone of a client.
This is useful if the server hosting the page and its clients reside in different time
zones. If time information is to be formatted or parsed in a time zone different from
that of the JSP container, the <fmt:formatDate> and <fmt:parseDate> action may be
nested inside a <fmt:timeZone> action or supplied with a timeZone attribute.

In the following example, the current date and time are formatted in the
“GMT+1:00” time zone:

9.2 Formatting Locale
A formatting action1 may leverage an i18n localization context to determine its
formatting locale or establish a formatting locale on its own, by following these
steps:

<fmt:formatDate value=”${now}” pattern="dd.MM.yy"/>

<fmt:timeZone value="GMT+1:00">
<fmt:formatDate value=”${now}” type="both" dateStyle="full"

timeStyle="full"/>
</fmt:timeZone>

1. Four formatting actions localize their data: <fmt:formatNumber>, <fmt:parseNumber>, <fmt:formatDate>,
<fmt:parseDate>.

92 JSTL 1.1 • November 2003

■ <fmt:bundle> action

If a formatting action is nested inside a <fmt:bundle> action (see Section 8.6), the
locale of the i18n localization context of the enclosing <fmt:bundle> action is used
as the formatting locale. The <fmt:bundle> action determines the resource bundle
of its i18n localization context according to the resource bundle determination
algorithm in Section 8.3, using the basename attribute as the resource bundle
basename. If the i18n localization context of the enclosing <fmt:bundle> action
does not contain any locale, go to the next step.

■ I18n default localization context

The default i18n localization context may be specified via the
javax.servlet.jsp.jstl.fmt.localizationContext configuration
setting. If such a configuration setting exists, and its value is of type
LocalizationContext, its locale is used as the formatting locale. Otherwise, if
the configuration setting is of type String, the formatting action establishes its
own i18n localization context and uses its locale as the formatting locale (in this
case, the resource bundle component of the i18n localization context is
determined according to the resource bundle determination algorithm in
Section 8.3, using the configuration setting as the resource bundle basename). If
the i18n localization context determined in this step does not contain any locale,
go to the next step.

■ Formatting locale lookup

The formatting action establishes a locale according to the algorithm described in
Section 9.3. This algorithm requires the preferred locales. The way the preferred
locales are set is exactly the same as with i18n actions and is described in
Section 8.2.1.

The following example shows how the various localization contexts can be
established to define the formatting locale.

<jsp:useBean id="now" class="java.util.Date" />

<%-- Formatting locale lookup --%>
<fmt:formatDate value=”${now}” />

<fmt:bundle basename="Greetings">
<%-- I18n localization context from parent <fmt:bundle> tag --%>
<fmt:message key="Welcome" />
<fmt:formatDate value=”${now}” />

</fmt:bundle>

Chapter 9 Formatting Actions 93

9.3 Establishing a Formatting Locale
If a formatting action fails to leverage an i18n localization context for its formatting
locale – either because the formatting action has no way of referring to an i18n
localization context, or the i18n localization context does not have any locale – it
must establish the formatting locale on its own, given an ordered set of preferred
locales, according to the formatting locale lookup algorithm described in this section.

9.3.1 Locales Available for Formatting Actions
The algorithm described in Section 9.3.3 compares preferred locales against the set of
locales that are available for a specific formatting action.

The locales available for actions <fmt:formatNumber> and <fmt:parseNumber> are
determined by a call to java.text.NumberFormat.getAvailableLocales().

The locales available for <fmt:formatDate> and <fmt:parseDate> are determined by
a call to java.text.DateFormat.getAvailableLocales().

9.3.2 Locale Lookup
The algorithm of Section 9.3.3 describes how the proper locale is determined. This
algorithm calls for a locale lookup: it attempts to find among the available locales, a
locale that matches the specified one.

The locale lookup is similar to the resource bundle lookup described in Section 8.3.1,
except that instead of trying to match a resource bundle, the locale lookup tries to
find a match in a list of available locales. A match of the specified locale against an
available locale is therefore attempted in the following order:

■ Language, country, and variant are the same
■ Language and country are the same
■ Language is the same and the available locale does not have a country

9.3.3 Formatting Locale Lookup Algorithm
Notes:

■ When there are multiple preferred locales, they are processed in the order they
were returned by a call to ServletRequest.getLocales().

94 JSTL 1.1 • November 2003

■ The algorithm stops as soon as a locale has been selected for the localization
context.

Step 1: Find a match within the ordered set of preferred locales

A locale lookup (see Section 9.3.2) is performed for each one of the preferred locales
until a match is found. The first match is used as the formatting locale.

Step 2: Find a match with the fallback locale

A locale lookup (see Section 9.3.2) is performed for the fallback locale specified in
the javax.servlet.jsp.jstl.fmt.fallbackLocale configuration setting. If a
match exists, it is used as the formatting locale.

If no match is found after the above two steps, it is up to the formatting action to
take a corrective action.

The result of the formatting locale lookup algorithm may be cached, so that
subsequent formatting actions that need to establish the formatting locale on their
own may leverage it.

9.4 Time Zone
Time information on a page may be tailored to the preferred time zone of a client.
This is useful if the server hosting the page and its clients reside in different time
zones (page authors could be advised to always use the "long" time format which
includes the time zone, but that would still require clients to convert the formatted
time into their own time zone).

When formatting time information using the <fmt:formatDate> action (see Section
9.8), or parsing time information that does not specify a time zone using the
<fmt:parseDate> action (see Section 9.9), the time zone to use is determined as
follows and in this order:

■ Use the time zone from the action's timeZone attribute.

■ If attribute timeZone is not specified and the action is nested inside an
<fmt:timeZone> action, use the time zone from the enclosing <fmt:timeZone>
action.

■ Use the time zone given by the javax.servlet.jsp.jstl.fmt.timeZone
configuration setting.

■ Use the JSP container’s time zone.

Chapter 9 Formatting Actions 95

9.5 <fmt:timeZone>
Specifies the time zone in which time information is to be formatted or parsed in its
body content.

Syntax

<fmt:timeZone value=”timeZone”>
body content

</fmt:timeZone>

Body Content

JSP. The JSP container processes the body content and then writes it to the current
JspWriter. The action ignores the body content.

Attributes

Null & Error Handling

■ If value is null or empty, the GMT timezone is used.

Description

The <fmt:timeZone> action specifies the time zone in which to format or parse the
time information of any nested time formatting (see Section 9.8) or parsing (see
Section 9.9) actions.

If the time zone is given as a string, it is parsed using
java.util.TimeZone.getTimeZone().

Name Dyn Type Description

value true
String or

java.util.TimeZone

The time zone. A String value is interpreted as
a time zone ID. This may be one of the time zone
IDs supported by the Java platform (such as
"America/Los_Angeles") or a custom time zone
ID (such as "GMT-8"). See
java.util.TimeZone for more information on
supported time zone formats.

96 JSTL 1.1 • November 2003

9.6 <fmt:setTimeZone>
Stores the specified time zone in a scoped variable or the time zone configuration
variable.

Syntax

<fmt:setTimeZone value=”timeZone”
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Body Content

Empty.

Attributes

Null & Error Handling

■ If value is null or empty, the GMT timezone is used.

Name Dyn Type Description

value true
String or

java.util.TimeZone

The time zone. A String value is interpreted as
a time zone ID. This may be one of the time zone
IDs supported by the Java platform (such as
"America/Los_Angeles") or a custom time zone
ID (such as "GMT-8"). See java.util.TimeZone for
more information on supported time zone
formats.

var false String
Name of the exported scoped variable which
stores the time zone of type
java.util.TimeZone.

scope false String
Scope of var or the time zone configuration
variable.

Chapter 9 Formatting Actions 97

Description

The <fmt:setTimeZone> action stores the given time zone in the scoped variable
whose name is given by var. If var is not specified, the time zone is stored in the
javax.servlet.jsp.jstl.fmt.timeZone configuration variable, thereby
making it the new default time zone in the given scope.
If the time zone is given as a string, it is parsed using
java.util.TimeZone.getTimeZone().

98 JSTL 1.1 • November 2003

9.7 <fmt:formatNumber>
Formats a numeric value in a locale-sensitive or customized manner as a number,
currency, or percentage.

Syntax

Syntax 1: without a body
<fmt:formatNumber value=”numericValue”

[type=”{number|currency|percent}”]
[pattern=”customPattern”]
[currencyCode=”currencyCode”]
[currencySymbol=”currencySymbol”]
[groupingUsed=”{true|false}”]
[maxIntegerDigits=”maxIntegerDigits”]
[minIntegerDigits=”minIntegerDigits”]
[maxFractionDigits=”maxFractionDigits”]
[minFractionDigits=”minFractionDigits”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Syntax 2: with a body to specify the numeric value to be formatted
<fmt:formatNumber [type=”{number|currency|percent}”]

[pattern=”customPattern”]
[currencyCode=”currencyCode”]
[currencySymbol=”currencySymbol”]
[groupingUsed=”{true|false}”]
[maxIntegerDigits=”maxIntegerDigits”]
[minIntegerDigits=”minIntegerDigits”]
[maxFractionDigits=”maxFractionDigits”]
[minFractionDigits=”minFractionDigits”]
[var=”varName”]
[scope=”{page|request|session|application}”]>

numeric value to be formatted

</fmt:formatNumber>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Chapter 9 Formatting Actions 99

Attributes

Constraints

■ If scope is specified, var must also be specified.
■ The value of the currencyCode attribute must be a valid ISO 4217 currency

code.

Null & Error Handling

■ If value is null or empty, nothing is written to the current JspWriter object and
the scoped variable is removed if it is specified (see attributes var and scope).

Name Dyn Type Description

value true
String or
Number

Numeric value to be formatted.

type true String
Specifies whether the value is to be
formatted as number, currency, or
percentage.

pattern true String Custom formatting pattern.

currencyCode true String
ISO 4217 currency code. Applied only
when formatting currencies (i.e. if type is
equal to "currency"); ignored otherwise.

currencySymbol true String
Currency symbol. Applied only when
formatting currencies (i.e. if type is equal
to "currency"); ignored otherwise.

groupingUsed true boolean
Specifies whether the formatted output
will contain any grouping separators.

maxIntegerDigits true int
Maximum number of digits in the integer
portion of the formatted output.

minIntegerDigits true int
Minimum number of digits in the integer
portion of the formatted output.

maxFractionDigits true int
Maximum number of digits in the
fractional portion of the formatted output.

minFractionDigits true int
Minimum number of digits in the
fractional portion of the formatted output.

var false String
Name of the exported scoped variable
which stores the formatted result as a
String.

scope false String Scope of var.

100 JSTL 1.1 • November 2003

■ If this action fails to determine a formatting locale, it uses Number.toString()
as the output format.

■ If the attribute pattern is null or empty, it is ignored.
■ If an exception occurs during the parsing of a string value, it must be caught and

rethrown as a JspException. The message of the rethrown JspException
must include the string value, and the caught exception must be provided as the
root cause.

Description

The numeric value to be formatted may be specified via the value attribute; if
missing, it is read from the tag’s body content.

The formatting pattern may be specified via the pattern attribute, or is looked up
in a locale-dependent fashion.

A pattern string specified via the pattern attribute must follow the pattern syntax
specified by the class java.text.DecimalFormat.

If looked up in a locale-dependent fashion, the formatting pattern is determined via
a combination of the formatting locale, which is determined according to Section 9.2,
and the type attribute. Depending on the value of the type attribute, the given
numeric value is formatted as a number, currency, or percentage. The locale's default
formatting pattern for numbers, currencies, or percentages is determined by calling
the java.text.NumberFormat method getNumberInstance,
getCurrencyInstance, or getPercentInstance, respectively, with the
formatting locale.

The pattern attribute takes precedence over type. In either case, the formatting
symbols (such as decimal separator and grouping separator) are given by the
formatting locale.

The (specified or locale-dependent) formatting pattern may be further fine-tuned
using the formatting options described below.

If the numeric value is given as a string literal, it is first parsed into a
java.lang.Number. If the string does not contain any decimal point, it is parsed
using java.lang.Long.valueOf(), or java.lang.Double.valueOf()
otherwise.

The formatted result is output to the current JspWriter object, unless the var
attribute is given, in which case it is stored in the named scoped variable.

Formatting Options

The groupingUsed attribute specifies whether the formatted ouput will contain any
grouping separators. See the java.text.NumberFormat method
setGroupingUsed() for more information.

Chapter 9 Formatting Actions 101

The minimum and maximum number of digits in the integer and fractional portions
of the formatted output may be given via the minIntegerDigits,
maxIntegerDigits, minFractionDigits, and maxFractionDigits attributes,
respectively. See the java.text.NumberFormat methods
setMinimumIntegerDigits(), setMaximumIntegerDigits(),
setMinimumFractionDigits(), and setMaximumFractionDigits() for more
information.

Formatting Currencies

When formatting currencies using the specified or locale-dependent formatting
pattern for currencies, the currency symbol of the formatting locale is used by
default. It can be overridden by using the currencySymbol or currencyCode
attributes, which specify the currency symbol or currency code, respectively, of the
currency to use.

If both currencyCode and currencySymbol are present, currencyCode takes
precedence over currencySymbol if the java.util.Currency class is defined in
the container’s runtime (that is, if the container’s runtime is J2SE 1.4 or greater), and
currencySymbol takes precendence otherwise. If only currencyCode is given, it
is used as a currency symbol if java.util.Currency is not defined.

102 JSTL 1.1 • November 2003

9.8 <fmt:parseNumber>
Parses the string representation of numbers, currencies, and percentages that were
formatted in a locale-sensitive or customized manner.

Syntax

Syntax 1: without a body
<fmt:parseNumber value=”numericValue”

[type=”{number|currency|percent}”]
[pattern=”customPattern”]
[parseLocale=”parseLocale”]
[integerOnly=”{true|false}”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Syntax 2: with a body to specify the numeric value to be parsed
<fmt:parseNumber [type=”{number|currency|percent}”]

[pattern=”customPattern”]
[parseLocale=”parseLocale”]
[integerOnly=”{true|false}”]
[var=”varName”]
[scope=”{page|request|session|application}”]>

numeric value to be parsed

</fmt:parseNumber>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Chapter 9 Formatting Actions 103

Attributes

Constraints

■ If scope is specified, var must also be specified.

Null & Error Handling

■ If the numeric string to be parsed is null or empty, the scoped variable defined by
attributes var and scope is removed. This allows "empty" input to be
distinguished from "invalid" input, which causes an exception.

■ If parseLocale is null or empty, it is treated as if it was missing.

■ If an exception occurs during the parsing of the value, it must be caught and
rethrown as a JspException. The message of the rethrown JspException
must include the value that was to be parsed, and the caught exception must be
provided as the root cause.

■ If this action fails to determine a formatting locale, it must throw a
JspException whose message must include the value that was to be parsed.

■ If the attribute pattern is null or empty, it is ignored.

Name Dyn Type Description

value true String String to be parsed.

type true String
Specifies whether the string in the value
attribute should be parsed as a number,
currency, or percentage.

pattern true String
Custom formatting pattern that determines
how the string in the value attribute is to be
parsed.

parseLocale true
String or

java.util.Locale

Locale whose default formatting pattern (for
numbers, currencies, or percentages,
respectively) is to be used during the parse
operation, or to which the pattern specified
via the pattern attribute (if present) is
applied.

integerOnly true boolean
Specifies whether just the integer portion of
the given value should be parsed.

var false String
Name of the exported scoped variable which
stores the parsed result (of type
java.lang.Number).

scope false String Scope of var.

104 JSTL 1.1 • November 2003

Description

The numeric value to be parsed may be specified via the value attribute; if missing,
it is read from the action's body content.

The parse pattern may be specified via the pattern attribute, or is looked up in a
locale-dependent fashion.

A pattern string specified via the pattern attribute must follow the pattern syntax
specified by java.text.DecimalFormat.

If looked up in a locale-dependent fashion, the parse pattern is determined via a
combination of the type and parseLocale attributes. Depending on the value of
the type attribute, the given numeric value is parsed as a number, currency, or
percentage. The parse pattern for numbers, currencies, or percentages is determined
by calling the java.text.NumberFormat method getNumberInstance,
getCurrencyInstance, or getPercentInstance, respectively, with the locale
specified via parseLocale. If parseLocale is missing, the formatting locale,
which is obtained according to Section 9.2, is used as the parse locale.

The pattern attribute takes precedence over type. In either case, the formatting
symbols in the pattern (such as decimal separator and grouping separator) are given
by the parse locale.

The integerOnly attribute specifies whether just the integer portion of the given
value should be parsed. See the java.text.NumberFormat method
setParseIntegerOnly() for more information.

If the var attribute is given, the parse result (of type java.lang.Number) is stored
in the named scoped variable. Otherwise, it is output to the current JspWriter
object using java.lang.Number.toString().

Chapter 9 Formatting Actions 105

9.9 <fmt:formatDate>
Allows the formatting of dates and times in a locale-sensitive or customized manner.

Syntax

<fmt:formatDate value="date"
[type="{time|date|both}"]
[dateStyle="{default|short|medium|long|full}"]
[timeStyle="{default|short|medium|long|full}"]
[pattern="customPattern"]
[timeZone="timeZone"]
[var="varName"]
[scope="{page|request|session|application}"]/>

Body Content

Empty.

Attributes

Name Dynamic Type Description

value true
java.util.

Date
Date and/or time to be formatted.

type true String
Specifies whether the time, the date, or both
the time and date components of the given
date are to be formatted.

dateStyle true String

Predefined formatting style for dates. Follows
the semantics defined in class
java.text.DateFormat. Applied only
when formatting a date or both a date and
time (i.e. if type is missing or is equal to
"date" or "both"); ignored otherwise.

timeStyle true String

Predefined formatting style for times. Follows
the semantics defined in class
java.text.DateFormat. Applied only
when formatting a time or both a date and
time (i.e. if type is equal to "time" or "both");
ignored otherwise.

pattern true String Custom formatting style for dates and times.

106 JSTL 1.1 • November 2003

Constraints

■ If scope is specified, var must also be specified.

Null & Error Handling

■ If value is null or empty, nothing is written to the current JspWriter object and
the scoped variable is removed if it is specified (see attributes var and scope).

■ If timeZone is null or empty, it is handled as if it was missing.
■ If this action fails to determine a formatting locale, it uses

java.util.Date.toString() as the output format.

Description

Depending on the value of the type attribute, only the time, the date, or both the
time and date components of the date specified via the value attribute or the body
content are formatted, using one of the predefined formatting styles for dates
(specified via the dateStyle attribute) and times (specified via the timeStyle
attribute) of the formatting locale, which is determined according to Section 9.2.

dateStyle and timeStyle support the semantics defined in
java.text.DateFormat.

Page authors may also apply a customized formatting style to their times and dates
by specifying the pattern attribute, in which case the type, dateStyle, and
timeStyle attributes are ignored. The specified formatting pattern must use the
pattern syntax specified by java.text.SimpleDateFormat.

In order to format the current date and time, a <jsp:useBean> action may be used as
follows:

<jsp:useBean id="now" class="java.util.Date" />
<fmt:formatDate value="${now}" />

timeZone true
String or
java.util.
TimeZone

Time zone in which to represent the formatted
time.

var false String
Name of the exported scoped variable which
stores the formatted result as a String.

scope false String Scope of var.

Name Dynamic Type Description

Chapter 9 Formatting Actions 107

If the string representation of a date or time needs to be formatted, the string must
first be parsed into a java.util.Date using the <fmt:parseDate> action, whose
parsing result may then be supplied to the <fmt:formatDate> action:

<fmt:parseDate value=”4/13/02" var=”parsed” />
<fmt:formatDate value="${parsed}" />

The action’s result is output to the current JspWriter object, unless the var
attribute is specified, in which case it is stored in the named scoped variable.

108 JSTL 1.1 • November 2003

9.10 <fmt:parseDate>
Parses the string representation of dates and times that were formatted in a locale-
sensitive or customized manner.

Syntax

Syntax 1: without a body
<fmt:parseDate value=”dateString”

[type=”{time|date|both}”]
[dateStyle=”{default|short|medium|long|full}”]
[timeStyle=”{default|short|medium|long|full}”]
[pattern=”customPattern”]
[timeZone=”timeZone”]
[parseLocale=”parseLocale”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Syntax 2: with a body to specify the date value to be parsed
<fmt:parseDate [type=”{time|date|both}”]

[dateStyle=”{default|short|medium|long|full}”]
[timeStyle=”{default|short|medium|long|full}”]
[pattern=”customPattern”]
[timeZone=”timeZone”]
[parseLocale=”parseLocale”]
[var=”varName”]
[scope=”{page|request|session|application}”]>

date value to be parsed

</fmt:parseDate>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Chapter 9 Formatting Actions 109

Attributes

Constraints

■ If scope is specified, var must also be specified.

Name Dyn Type Description

value true String Date string to be parsed.

type true String
Specifies whether the date string in the
value attribute is supposed to contain a
time, a date, or both.

dateStyle true String

Predefined formatting style for days
which determines how the date
component of the date string is to be
parsed. Applied only when formatting a
date or both a date and time (i.e. if type
is missing or is equal to "date" or "both");
ignored otherwise.

timeStyle true String

Predefined formatting styles for times
which determines how the time
component in the date string is to be
parsed. Applied only when formatting a
time or both a date and time (i.e. if type
is equal to "time” or "both”); ignored
otherwise.

pattern true String
Custom formatting pattern which
determines how the date string is to be
parsed.

timeZone true
String or

java.util.TimeZone
Time zone in which to interpret any time
information in the date string.

parseLocale true
String or

java.util.Locale

Locale whose predefined formatting styles
for dates and times are to be used during
the parse operation, or to which the
pattern specified via the pattern
attribute (if present) is applied.

var false String
Name of the exported scoped variable in
which the parsing result (of type
java.util.Date) is stored.

scope false String Scope of var.

110 JSTL 1.1 • November 2003

Null & Error Handling

■ If the date string to be parsed is null or empty, the scoped variable defined by var
and scope is removed. This allows "empty" input to be distinguished from
"invalid" input, which causes an exception.

■ If timeZone is null or empty, it is treated as if it was missing.
■ If parseLocale is null or empty, it is treated as if it was missing.
■ If an exception occurs during the parsing of the value, it must be caught and

rethrown as a JspException. The message of the rethrown JspException
must include the value that was to be parsed, and the caught exception must be
provided as the root cause.

■ If this action fails to determine a formatting locale, it must throw a
JspException whose message must include the value that was to be parsed.

Description

The date string to be parsed may be specified via the value attribute or via the tag’s
body content.

Depending on the value of the type attribute, the given date string is supposed to
contain only a time, only a date, or both. It is parsed according to one of the
predefined formatting styles for dates (specified via the dateStyle attribute) and
times (specified via the timeStyle attribute) of the locale specified by the
parseLocale attribute. If the parseLocale attribute is missing, the formatting
locale, which is determined according to Section 9.2, is used as the parse locale.

If the given date string uses a different format, the pattern required to parse it must
be specified via the pattern attribute, which must use the pattern syntax specified
by java.text.SimpleDateFormat. In this case, the type, dateStyle, and
timeStyle attributes are ignored. Parsing is non-lenient, i.e. the given date string
must strictly adhere to the parsing format.

If the given time information does not specify a time zone, it is interpreted in the
time zone determined according to Section 9.4.

If the var attribute is given, the parsing result (of type java.util.Date) is stored
in the named scoped variable. Otherwise, it is output to the current JspWriter
using the java.util.Date method toString().

Chapter 9 Formatting Actions 111

9.11 Configuration Settings
This section describes the formatting-related configuration settings. Refer to
Section 2.8 for more information on how JSTL processes configuration data.

9.11.1 TimeZone

Specifies the application’s default time zone. A String value is interpreted as
defined in action <fmt:timeZone> (see Section 9.5).

Variable name javax.servlet.jsp.jstl.fmt.timeZone

Java Constant Config.FMT_TIMEZONE

Type String or java.util.TimeZone

Set by <fmt:setTimeZone>

Used by <fmt:formatDate>, <fmt:parseDate>

112 JSTL 1.1 • November 2003

113

CHAPTER 10

SQL Actions
sql tag library

Many web applications need to access relational databases as the source of dynamic
data for their presentation layer. While it is generally preferred to have database
operations handled within the business logic of a web application designed with an
MVC architecture, there are situations where page authors require this capability
within their JSP pages (e.g. prototyping/testing, small scale/simple applications,
lack of developer resources).

The JSTL SQL actions provide the basic capabilities to easily interact with relational
databases.

10.1 Overview
The JSTL SQL actions allow page authors to:

■ Perform database queries (select)
■ Easily access query results
■ Perform database updates (insert, update, delete)
■ Group several database operations into a transaction

10.1.1 Data Source
SQL actions operate on a data source, as defined by the Java class
javax.sql.DataSource. A DataSource object provides connections to the
physical data source it represents. Within the context of a Connection retrieved
from the DataSource, SQL statements are executed and results are returned.

114 JSTL 1.1 • November 2003

A data source can be specified explicitly via the dataSource attribute in SQL
actions, or it can be totally transparent to a page author by taking advantage of the
data source configuration setting (javax.servlet.jsp.jstl.sql.dataSource).

There are two ways a data source can be specified as a string.

The first way is through a JNDI relative path, assuming a container supporting
JNDI. For example, with the absolute JNDI resource path java:comp/env/jdbc/
myDatabase, the JNDI relative path to the data source resource would simply be
jdbc/myDatabase, given that java:comp/env is the standard JNDI root for a
J2EE application.

The second way is by specifying the parameters needed by the JDBC
DriverManager class, using the following syntax (see Section 10.6 for details on the
JDBC parameters)

url[,[driver][,[user][,password]]]

For example,

jdbc:mysql://localhost/,org.gjt.mm.mysql.Driver

where the database has been setup for access without any username or password. If
the ‘,’ character occurs in any of the JDBC parameters, it can be escaped by ‘\’. The
character ‘\’ itself can be escaped in the same way.

While the JDBC DriverManager class provides a low cost way to use SQL actions,
it is not recommended to use it other than for prototyping purposes because it does
not provide connection management features one can expect from a properly
designed DataSource object.

10.1.2 Querying a Database
The most common use of the database actions is to query a database and display the
results of the query.

Chapter 10 SQL Actions 115

The following sample code selects all customers from China from the customers
table in the database, orders them by last name, and finally displays their last name,
first name, and address in an HTML table.

This next example shows a generic way to display the results of a query with
column names as headers:

<sql:query var="customers" dataSource="${dataSource}">
SELECT * FROM customers
WHERE country = ’China’
ORDER BY lastname

</sql:query>

<table>
<c:forEach var="row" items="${customers.rows}">
<tr>
<td><c:out value="${row.lastName}"/></td>
<td><c:out value="${row.firstName}"/></td>
<td><c:out value="${row.address}"/></td>

</tr>
</c:forEach>

</table>

<table>
<!-- column headers -->
<tr>
<c:forEach var=”columnName” items=”${result.columnNames}”>
<th><c:out value="${columnName}"/></th>

</c:forEach>
</tr>
<!-- column data -->
<c:forEach var="row" items="${result.rowsByIndex}">
<tr>
<c:forEach var="column" items="${row}">
<td><c:out value="${column}"/></td>

</c:forEach>
</tr>

</c:forEach>
</table>

116 JSTL 1.1 • November 2003

10.1.3 Updating a Database
The <sql:update> action updates a database. To ensure database integrity, several
updates to a database may be grouped into a transaction by nesting the
<sql:update> actions inside a <sql:transaction> action.

For example, the following code transfers money between two accounts in one
transaction:

10.1.4 SQL Statement Parameters
The JSTL database actions support substituting parameter values for parameter
markers (“?”) in SQL statements (as shown in the previous example). This form of
parametric replacement is exposed by the SQLExecutionTag interface (see
Chapter 16 “Java APIs”).

The SQLExecutionTag interface is implemented by the tag handlers for
<sql:query> and <sql:update>. It is exposed in order to support custom parameter
actions. These custom actions may retrieve their parameters from any source and
process them before substituting them for a parameter marker in the SQL statement
of the enclosing SQLExecutionTag action.

For example, a GUI front end may have a user enter a date as three separate fields
(year, month, and day), and use this information in a database query. If the database
table being accessed provides only a single column for the complete date, action

<sql:transaction dataSource="${dataSource}">
<sql:update>
UPDATE account
SET Balance = Balance - ?
WHERE accountNo = ?
<sql:param value="${transferAmount}"/>
<sql:param value="${accountFrom}"/>

</sql:update>
<sql:update>
UPDATE account
SET Balance = Balance + ?
WHERE accountNo = ?
<sql:param value="${transferAmount}"/>
<sql:param value="${accountTo}"/>

</sql:update>
</sql:transaction>

Chapter 10 SQL Actions 117

<acme:dateParam> could assemble the three separate input parameters into one and
pass it to the addSQLParameter() method of its enclosing SQLExecutionTag
action:

The JSTL formatting tags may be used to parse the string representation of dates and
numbers into instances of java.util.Date and java.lang.Number, respectively,
before supplying them to an enclosing SQLExecutionTag for parametric
replacement:

<sql:update>
UPDATE PersonalInfo
SET BirthDate = ?
WHERE clientId = ?
<acme:dateParam year="${year}" month="${month}" day="${day}"/>
<sql:param value=”${clientId}”/>

</sql:update>

<sql:update sql="${sqlUpdateStmt}” dataSource="${dataSource}">
<fmt:parseDate var="myDate" value="${someDate}”/>
<sql:param value="${myDate}"/>

</sql:update>

118 JSTL 1.1 • November 2003

10.2 Database Access
This section describes the algorithm used by the SQL actions (<sql:query>,
<sql:update>, <sql:transaction>) to access a database.

■ Try to get a reference to a data source as follows:

■ If the attribute dataSource is specified, use the value specified for that
attribute as the data source.

■ Otherwise, get the configuration setting associated with
javax.servlet.jsp.jstl.sql.dataSource using Config.find() (see
Section 2.8). Use the value found as the data source if it is not null.

■ If a data source is obtained from the previous step:

■ If it is a DataSource object, this is the data source used by the action to access
the database.

■ Otherwise, if it is a String:
■ Assume this is a JNDI relative path and retrieve the data source from the

container’s JNDI naming context by concatenating the specified relative path
to the J2EE defined root (java:comp/env/).

■ If the previous step fails (data source not found), assume the string specifies
JDBC parameters using the syntax described in Section 10.1.1 and do as
follows:
■ If driver is specified, ensure it is loaded
■ Access the named URL through the DriverManager class, using an

empty string for user or password if they are not specified.
■ If the previous step fails, throw an exception.

■ Otherwise, throw an exception.

An implementation need not create new objects each time a SQL action is called and
the algorithm above does not yield a DataSource object directly; i.e when a JNDI
path or parameters for the JDBC DriverManager class are used. It may reuse
objects that it previously created for identical arguments.

It is important to note that actions that open a connection to a database must close
the connection as well as release any other associated resources (for example,
Statement, PreparedStatement and ResultSet objects) by the time the action
completes. This ensures that no connections are left open and that leaks are avoided
when these actions are used with pooling mechanisms.

Chapter 10 SQL Actions 119

10.3 <sql:query>
Queries a database.

Syntax

Syntax 1: Without body content
<sql:query sql="sqlQuery"

var="varName" [scope=”{page|request|session|application}”]
[dataSource=”dataSource”]
[maxRows="maxRows"]
[startRow="startRow"]/>

Syntax 2: With a body to specify query arguments
<sql:query sql="sqlQuery"

var="varName" [scope=”{page|request|session|application}”]
[dataSource=”dataSource”]
[maxRows="maxRows"]
[startRow="startRow"]>

<sql:param> actions

</sql:query>

Syntax 3: With a body to specify query and optional query parameters
<sql:query var="varName"

[scope=”{page|request|session|application}”]
[dataSource=”dataSource”]
[maxRows="maxRows"]
[startRow="startRow"]>

query
optional <sql:param> actions

</sql:query>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

120 JSTL 1.1 • November 2003

Attributes

Constraints

■ If dataSource is specified, this action must not be nested inside a
<sql:transaction>.1

■ maxRows must be >= -1

Null & Error Handling

■ If dataSource is null, a JspException is thrown.
■ If an exception occurs during the execution of this action, it must be caught and

rethrown as a JspException. The message of the rethrown JspException
must include the SQL statement, and the caught exception must be provided as
the root cause.

Description

The <sql:query> action queries a database and returns a single result set containing
rows of data that it stores in the scoped variable identified by the var and scope
attributes.

Name Dynamic Type Description

sql true String SQL query statement.

dataSource true
javax.sql.
DataSource
or String

Data source associated with the database to
query. A String value represents a relative path
to a JNDI resource or the parameters for the
DriverManager class.

maxRows true int

The maximum number of rows to be included in
the query result. If not specified, or set to -1, no
limit on the maximum number of rows is
enforced.

startRow true int

The returned Result object includes the rows
starting at the specified index. The first row of
the original query result set is at index 0. If not
specified, rows are included starting from the
first row at index 0.

var false String

Name of the exported scoped variable for the
query result. The type of the scoped variable is
javax.servlet.jsp.jstl.sql.
Result (see Chapter 16 “Java APIs”).

scope false String Scope of var.

1. <sql:transaction> is responsible for setting the data source in a transaction.

Chapter 10 SQL Actions 121

If the query produces no results, an empty Result object (of size zero) is returned.

The SQL query statement may be specified by the sql attribute or from the action’s
body content.

The query statement may contain parameter markers (“?”) identifying JDBC
PreparedStatement parameters, whose values must be supplied by nested
parameter actions (such as <sql:param>, see Section 10.7). The <sql:query> action
implements the SQLExecutionTag interface (see Chapter 16 “Java APIs”), allowing
parameter values to be supplied by custom parameter actions.

maxRows and startRow

The maximum number of rows to be included in the query result may be specified
by the maxRows attribute (for a specific <sql:query> action) or by the configuration
setting javax.servlet.jsp.jstl.sql.maxRows (see Section 2.8 and
Section 10.9). Attribute maxRows has priority over the configuration setting. A value
of -1 means that no limit is enforced on the maximum number of rows.

The startRow attribute may be used to specify the index of the first row to be
included in the returned Result object. For example, if given a value of 10, the
returned Result object will start with the row located at index 10 (i.e. rows 0 through
9 of the original query result set are skipped). All remaining rows of the original
query result set are included.

If both startRow and maxRows are specified, a maximum of startRow +
maxRows rows are retrieved from the database. All rows up to startRow are then
discarded, and the remaining rows (from startRow through startRow +
maxRows) are included in the result.

When using startRow, it is important to note that the order in which rows are
returned is not guaranteed between RDBMS implementations unless an “order by”
clause is specified in the query.

maxRows and startRow protect against so-called "runaway queries", allow efficient
access to the top rows of large result sets, and also provide a “poor-man’s way” of
paging through a large query result by increasing startRow by maxRows over a
previous page.

Obtaining and Releasing a Connection

If <sql:query> is nested inside an <sql:transaction> action, the Connection object is
obtained from that parent <sql:transaction> which is reponsible for managing access
to the database.

Otherwise, access to the database is performed according to the algorithm described
in Section 10.2. A Connection object is obtained and released before the action
completes.

122 JSTL 1.1 • November 2003

10.4 <sql:update>
Executes an SQL INSERT, UPDATE, or DELETE statement. In addition, SQL
statements that return nothing, such as SQL DDL statements, can be executed.

Syntax

Syntax 1: Without body content
<sql:update sql="sqlUpdate"

[dataSource=”dataSource”]
[var="varName"] [scope=”{page|request|session|application}”]/>

Syntax 2: With a body to specify update parameters
<sql:update sql="sqlUpdate"

[dataSource=”dataSource”]
[var="varName"] [scope=”{page|request|session|application}”]>

<sql:param> actions

</sql:update>

Syntax 3: With a body to specify update statement and optional update parameters
<sql:update [dataSource=”dataSource”]

[var="varName"] [scope=”{page|request|session|application}”]>

update statement
optional <sql:param> actions

</sql:update>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Chapter 10 SQL Actions 123

Attributes

Constraints

■ If scope is specified, var must also be specified.
■ If dataSource is specified, this action must not be nested inside a

<sql:transaction>.

Null & Error Handling

■ If dataSource is null, a JspException is thrown.
■ If an exception occurs during the execution of this action, it must be caught and

rethrown as a JspException. The message of the rethrown JspException
must include the SQL statement, and the caught exception must be provided as
the root cause.

Description

The SQL update statement may be specified by the sql attribute or from the action’s
body content.

The update statement may contain parameter markers (“?”) identifying JDBC
PreparedStatement parameters, whose values must be supplied by nested
parameter actions (such as <sql:param>, see Section 10.7). The <sql:update> action
implements the SQLExecutionTag interface (see Chapter 16 “Java APIs”), allowing
the parameter values to be supplied by custom parameter tags.

The connection to the database is obtained in the same manner as described for
<sql:query> (see Section 10.3).

The result of an <sql:update> action is stored in a scoped variable named by the
var attribute, if that attribute was specified. That result represents the number of
rows that were affected by the update. Zero is returned if no rows were affected by

Name Dyn Type Description

sql true String SQL update statement.

dataSource true
javax.sql.
DataSource
or String

Data source associated with the database to update.
A String value represents a relative path to a JNDI
resource or the parameters for the JDBC
DriverManager class.

var false String
Name of the exported scoped variable for the result
of the database update. The type of the scoped
variable is java.lang.Integer.

scope false String Scope of var.

124 JSTL 1.1 • November 2003

INSERT, DELETE, or UPDATE, and for any SQL statement that returns nothing (such
as SQL DDL statements). This is consistent with method executeUpdate() of the
JDBC class Statement.

Chapter 10 SQL Actions 125

10.5 <sql:transaction>
Establishes a transaction context for <sql:query> and <sql:update> subtags.

Syntax

<sql:transaction [dataSource=”dataSource”]
[isolation=isolationLevel]>

<sql:query> and <sql:update> statements

</sql:transaction>

isolationLevel ::= "read_committed"
| "read_uncommitted"
| "repeatable_read"
| "serializable"

Body Content

JSP. The JSP container processes the body content and then writes the result to the
current JspWriter. The action ignores the body content.

Attributes

Constraints

■ Any nested <sql:query> and <sql:update> actions must not specify a
dataSource attribute.

Null & Error Handling

■ If dataSource is null, a JspException is thrown.

Name Dyn Type Description

dataSource true
javax.sql.
DataSource
or String

DataSource associated with the database to access. A
String value represents a relative path to a JNDI
resource or the parameters for the JDBC
DriverManager facility.

isolation true String
Transaction isolation level. If not specified, it is the
isolation level the DataSource has been configured
with.

126 JSTL 1.1 • November 2003

■ Any exception occurring during the execution of this action must be caught and
rethrown after the transaction has been rolled back (see description below for
details).

Description

The <sql:transaction> action groups nested <sql:query> and <sql:update> actions
into a transaction.

The transaction isolation levels are defined by java.sql.Connection.

The tag handler of the <sql:transaction> action must perform the following steps in
its lifecycle methods:

■ doStartTag():

■ Determines the transaction isolation level the DBMS is set to (using the
Connection method getTransactionIsolation()).

If transactions are not supported (that is, the transaction isolation level is equal
to TRANSACTION_NONE), an exception is raised, causing the transaction to fail.

For any other transaction isolation level, the auto-commit mode is is saved (so
it can later be restored), and then disabled by calling
setAutoCommit(false)on the Connection.

■ If the isolation attribute is specified and differs from the connection's
current isolation level, the current transaction isolation level is saved (so it can
later be restored) and set to the specified level (using the Connection method
setTransactionIsolation()).

■ doEndTag(): Calls the Connection method commit().

■ doCatch(): Calls the Connection method rollback().

■ doFinally():

■ If a transaction isolation level has been saved, it is restored using the
Connection method setTransactionIsolation().

■ Restore auto-commit mode to its saved value by calling setAutoCommit() on
the Connection.

■ Closes the connection.

The Connection object is obtained and managed in the same manner as described
for <sql:query> (see Section 10.3), except that it is never obtained from a parent tag
(<sql:transaction> tags can not be nested as a means to propagate a Connection).

Note that the <sql:transaction> tag handler commits or rollbacks the transaction (if it
catches an exception) by calling the JDBC Connection commit() and
rollback() methods respectively. Executing the corresponding SQL statements
using <sql:update>, e.g. <sql:update sql="rollback" />, within the <sql:transaction>
element body is not supported and the result of doing so is unpredictable.

Chapter 10 SQL Actions 127

Finally, the behavior of the <sql:transaction> action is undefined if it executes in the
context of a larger JTA user transaction.

128 JSTL 1.1 • November 2003

10.6 <sql:setDataSource>
Exports a data source either as a scoped variable or as the data source configuration
variable (javax.servlet.jsp.jstl.sql.dataSource).

Syntax

<sql:setDataSource
{dataSource="dataSource" |
 url="jdbcUrl"
[driver="driverClassName"]
 [user="userName"]
 [password="password"]}
[var="varName"]
[scope=”{page|request|session|application}”]/>

Body Content

Empty.

Attributes

Name Dyn Type Description

dataSource true
String or

javax.sql.DataSource

Data source. If specified as a string, it
can either be a relative path to a JNDI
resource, or a JDBC parameters string
as defined in Section 10.1.1.

driver true String JDBC parameter: driver class name.

url true String
JDBC parameter: URL associated with
the database.

user true String
JDBC parameter: database user on
whose behalf the connection to the
database is being made.

password true String JDBC parameter: user password

var false String
Name of the exported scoped variable
for the data source specified. Type can
be String or DataSource.

scope false String
If var is specified, scope of the
exported variable. Otherwise, scope of
the data source configuration variable.

Chapter 10 SQL Actions 129

Null & Error Handling

■ If dataSource is null, a JspException is thrown.

Description

If the var attribute is specified, the <sql:setDataSource> action exports the data
source specified (either as a DataSource object or as a String) as a scoped variable.
Otherwise, the data source is exported in the
javax.servlet.jsp.jstl.sql.dataSource configuration variable.

The data source may be specified either via the dataSource attribute (as a
DataSource object, JNDI relative path, or JDBC parameters string), or via the four
JDBC parameters attributes. These four attributes are provided as a simpler
alternative to the JDBC parameters string syntax defined in Section 10.1.1 that would
have to be used with the dataSource attribute.

As mentioned in Section 10.1.1, using JDBC’s DriverManager class to access a
database is intended for prototyping purposes only because it does not provide
connection management features one can expect from a properly designed
DataSource object.

130 JSTL 1.1 • November 2003

10.7 <sql:param>
Sets the values of parameter markers (“?”) in a SQL statement. Subtag of
SQLExecutionTag actions such as <sql:query> and <sql:update>.

Syntax

Syntax 1: Parameter value specified in attribute “value”
<sql:param value=”value”/>

Syntax 2: Parameter value specified in the body content
<sql:param>

parameter value
</sql:param>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

Constraints

■ Must be nested inside an action whose tag handler is an instance of
SQLExecutionTag (see Chapter 16 “Java APIs”).

Null & Error Handling

■ If value is null, the parameter is set to the SQL value NULL.

Description

The <sql:param> action substitutes the given parameter value for a parameter
marker(“?”) in the SQL statement of its enclosing SQLExecutionTag action.

Parameters are substituted in the order in which they are specified.

Name Dyn Type Description

value true Object Parameter value.

Chapter 10 SQL Actions 131

The <sql:param> action locates its nearest ancestor that is an instance of
SQLExecutionTag and calls its addSQLParameter() method, supplying it with
the given parameter value.

It is important to note that the semantics of
SQLExecutionTag.addSQLParameter() are such that supplying a parameter
with a String value (e.g. when using syntax 2) only works for columns of text type
(CHAR, VARCHAR or LONGVARCHAR).

132 JSTL 1.1 • November 2003

10.8 <sql:dateParam>
Sets the values of parameter markers (“?”) in a SQL statement for values of type
java.util.Date. Subtag of SQLExecutionTag actions, such as <sql:query> and
<sql:update>.

Syntax

<sql:dateParam value=”value” [type=”{timestamp|time|date}”]/>

Body Content

Empty.

Attributes

Constraints

■ Must be nested inside an action whose tag handler is an instance of
SQLExecutionTag (see Chapter 16 “Java APIs”).

Null & Error Handling

■ If value is null, the parameter is set to the SQL value NULL.

Description

This action converts the provided java.util.Date instance to one of
java.sql.Date, java.sql.Time or java.sql.Timestamp as defined by the
type attribute as follows:

■ If the java.util.Date object provided by the value attribute is an instance of
java.sql.Time, java.sql.Date, or java.sql.Timestamp, and the type
attribute matches this object's type, then it is passed as is to the database.

Name Dyn Type Description

value true java.util.Date
Parameter value for DATE, TIME, or
TIMESTAMP column in a database table.

type true String One of "date", "time" or "timestamp".

Chapter 10 SQL Actions 133

■ Otherwise, the object is converted to the appropriate type by calling that type's
constructor with a parameter of date.getTime(), where date is the value of
the value attribute.

The <sql:dateParam> action substitutes the given parameter value for a parameter
marker(“?”) in the SQL statement of its enclosing SQLExecutionTag action.

Parameters are substituted in the order in which they are specified.

The <sql:dateParam> action locates its nearest ancestor that is an instance of
SQLExecutionTag and calls its addSQLParameter() method, supplying it with
the given parameter value.

134 JSTL 1.1 • November 2003

10.9 Configuration Settings
This section describes the configuration settings used by the SQL actions. Refer to
Section 2.8 for more information on how JSTL processes configuration data.

10.9.1 DataSource

The data source to be accessed by the SQL actions. It can be specified as a string
representing either a JNDI relative path or a JDBC parameters string (as defined in
Section 10.1.1), or as a javax.sql.DataSource object.

10.9.2 MaxRows

The maximum number of rows to be included in a query result. If the maximum
number of rows is not specified, or is -1, it means that no limit is enforced on the
maximum number of rows. Value must be >= -1.

Variable name javax.servlet.jsp.jstl.sql.dataSource

Java Constant Config.SQL_DATA_SOURCE

Type String or javax.sql.DataSource

Set by
<sql:setDataSource>, Deployment Descriptor,
Config class

Used by <sql:query>, <sql:update>, <sql:transaction>

Variable name javax.servlet.jsp.jstl.sql.maxRows

Java Constant Config.SQL_MAX_ROWS

Type Integer

Set by Deployment Descriptor, Config class

Used by <sql:query>

135

CHAPTER 11

XML Core Actions
xml tag library

Enterprise data used in the web tier is increasingly XML these days — when
companies cooperate over the web, XML is the data format of choice for exchanging
information.

XML is therefore becoming more and more important in a page author's life. The set
of XML actions specified in JSTL is meant to address the basic XML needs a page
author is likely to encounter.

The XML actions are divided in three categories: XML core actions (this chapter),
XML flow control actions (Chapter 12), and XML transform actions (Chapter 13).

11.1 Overview
A key aspect of dealing with XML documents is to be able to easily access their
content. XPath, a W3C recommendation since 1999, provides a concise notation for
specifying and selecting parts of an XML document. The XML set of actions in JSTL
is therefore based on XPath.

The introduction of XPath for the XML tagset expands the notion of expression
language. XPath is an expression language that is used locally for the XML actions.
Below are the rules of integration that XPath follows as a local expression language.
These rules ensure that XPath integrates nicely within the JSTL environment.

11.1.1 XPath Context
In XPath, the context for evaluating an expression consists of:

■ A node or nodeset

136 JSTL 1.1 • November 2003

■ Variable bindings (see below)

■ Function library

The default function library comes with the XPath engine. Some engines provide
extension functions or allow customization to add new functions. The XPath
function library in JSTL is limited to the core function library of the XPath
specification.

■ Namespace prefix definitions which allow namespace prefixes to be used within
an XPath expression.

11.1.2 XPath Variable Bindings
The XPath engine supports the following scopes to easily access web application
data within an XPath expression. These scopes are defined in exactly the same way
as their implicit object counterparts in the JSTL expression language (see
Section A.6).

Through these mappings, JSP scoped variables, request parameters, headers, and
cookies, as well as context init parameters can all be used inside XPath expressions
easily. For example:

Expression Mapping

$foo pageContext.findAttribute("foo")

$param:foo request.getParameter("foo")

$header:foo request.getHeader("foo")

$cookie:foo maps to the cookie's value for name foo

$initParam:foo application.getInitParameter("foo")

$pageScope:foo
pageContext.getAttribute(

"foo", PageContext.PAGE_SCOPE)

$requestScope:foo
pageContext.getAttribute(

"foo", PageContext.REQUEST_SCOPE)

$sessionScope:foo
pageContext.getAttribute(

"foo", PageContext.SESSION_SCOPE)

$applicationScope:foo
pageContext.getAttribute(

"foo", PageContext.APPLICATION_SCOPE)

/foo/bar[@x=$param:name]

Chapter 11 XML Core Actions 137

would find the "bar" element with an attribute "x" equal to the value of the http
request parameter "name".

11.1.3 Java to XPath Type Mappings
An XPath variable must reference a java.lang.Object instance in one of the
supported scopes, identified by namespace prefix. The following mappings must be
supported:

A compliant implementation must allow an XPath variable to address objects
exposed by that implementation's handlers for <x:set> and <x:forEach>. For
example, while an implementation of <x:set> may expose, for a node-set S, an object
of any valid Java type, subsequent XPath evaluations must interpret this object as
the node-set S.

An XPath expression must also treat variables that resolve to implementations of
standard DOM interfaces as representing nodes of the type bound to that interface
by the DOM specification.

XPath variable references that address objects of other types result in
implementation-defined behavior. (An implementation may throw an exception if it
encounters an unrecognized type.) Following the XPath specification (section 3.1), a
variable name that is not bound to any value results in an exception.

Java Type XPath Type

java.lang.Boolean boolean

java.lang.Number number

java.lang.String string

Object exported by <x:parse> node-set

138 JSTL 1.1 • November 2003

11.1.4 XPath to Java Type Mappings
Evaluation of XPath expressions evaluate to XPath types. Their mapping to Java
objects is defined as follows:

11.1.5 The select Attribute
In all the XML actions of JSTL, XPath expressions are always specified using the
select attribute. select is therefore always specified as a string literal that is
evaluated by the XPath engine.

This clear separation, where only the select attribute of XML actions evaluates
XPath expressions, helps avoid confusion between XPath (expression language that
is local to the XML actions) and the JSTL expression language (global to all actions
with dynamic attributes in the EL version of the tag library).

11.1.6 Default Context Node
The context node for every XPath expression evaluation in JSTL that does not appear
in the body of an <x:forEach> tag is the root of an empty document. Page authors
wishing to work with documents must therefore suply their own node(s) using an
XPath variable (see Section 11.1.2).

Action <x:forEach> establishes for its nested actions a specific context for XPath
expressions evaluation. See Section 12.6 for details.

XPath Type Java Type

boolean
true or false java.lang.Boolean

number
a floating-point number java.lang.Number

string
a sequence of UCS characters java.lang.String

node-set
an unordered collection of nodes
without duplicates

Type usable by JSTL XML-manipulation
tags in the same JSTL implementation. The
specific Java type representing node-sets
may thus vary by implementation.

Chapter 11 XML Core Actions 139

11.1.7 Resources Access
XML actions such as <x:parse> and <x:transform> allow the specification of XML
and/or XSLT documents as String or Reader objects. Accessing a resource
through a URL is therefore handled through the <c:import> action that works
seamlessly with the XML tags as shown below:

To resolve references to external entities, the systemId (<x:parse>) and
docSystemId/xsltSystemId (<x:transform>) attributes can be used. For these
attributes:

■ Absolute URLs are passed to the parser directly

■ Relative URLs are treated as references to resources (e.g., loaded via
ServletContext.getResource()) and loaded using an EntityResolver
and URIResolver as necessary

11.1.8 Core Actions
The XML core actions provide “expression language support” for XPath. These
actions are therefore similar to the EL support actions <c:out> and <c:set> covered in
Chapter 4, except that they apply to XPath expressions.

The core XML actions feature one additional action, <x:parse>, to parse an XML
document into a data structure that can then be processed by the XPath engine. For
example:

<c:import url=”http://acme.com/productInfo” var=”doc”>
<c:param name=”productName” value=”${product.name}”/>

</c:import>
<x:parse doc=”${doc}” var=”parsedDoc”/>

<!-- parse an XML document -->
<c:import url=”http://acme.com/customer?id=76567” var=”doc”/>
<x:parse doc=”${doc}” var=”parsedDoc”/>

<!-- access XML data via XPath expressions -->
<x:out select=”$parsedDoc/name”/>
<x:out select=”$parsedDoc/address”/>

<!-- set a scoped variable -->
<x:set var=”custName” scope=”request” select=”$parsedDoc/name”/>

140 JSTL 1.1 • November 2003

The context for the evaluation of an XPath Expression can be set either directly
within the XPath expression (as shown in the example above), or via an ancestor tag
that sets a context that can be used by nested tags. An example of this is with action
<x:forEach> (see Section 12.6).

<!-- context set by ancestor tag <x:forEach> -->
<x:forEach select=”$parsedDoc//customer”>

<x:out select=”name”/>
</x:forEach>

Chapter 11 XML Core Actions 141

11.2 <x:parse>
Parses an XML document.

Syntax

Syntax 1: XML document specified via a String or Reader object
<x:parse {doc=”XMLDocument”|xml1=”XMLDocument”}

{var=”var” [scope=”scope”]|varDom=”var” [scopeDom=”scope”]}
[systemId=”systemId”]
[filter=”filter”]/>

Syntax 2: XML document specified via the body content
<x:parse

{var=”var” [scope=”scope”]|varDom=”var” [scopeDom=”scope”]}
[systemId=”systemId”]

[filter=”filter”]>

XML Document to parse

</x:parse>

where scope is {page|request|session|application}

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

1. Deprecated.

Name Dyn Type Description

doc true String, Reader Source XML document to be parsed.

xml true String, Reader Deprecated1. Use attribute doc instead.

systemId true String
The system identifier (URI) for parsing the
XML document.

filter true
org.xml.sax.
XMLFilter

Filter to be applied to the source
document.

142 JSTL 1.1 • November 2003

Null & Error Handling

■ If the source XML document is null or empty, a JspException is thrown.
■ If filter is null, filtering is not performed.

Description

The <x:parse> action parses an XML document and saves the resulting object in the
scoped variable specified by attribute var or varDom. It does not perform any
validation against DTDs or Schemas.

The XML document can be specified either with the doc attribute, or inline via the
action's body content.

var and varDom

If var is used, the type of the resulting object is not defined by this specification.
This allows implementations to use whatever they deem best for an efficient
implementation of the XML tagset. varDom exposes a DOM document, allowing
collaboration with custom actions. Objects exposed by var and varDom can both be
used to set the context of an XPath expression.

Filtering for Performance Benefits

If an implementation of the XML tagset is based on DOM-like structures, there will
be a significant performance impact when dealing with large XML documents. To
help with this, attribute filter can be used to allow filtering of the input data prior
to having it parsed by the implementation into a DOM-like structure.

var false String

Name of the exported scoped variable for
the parsed XML document. The type of the
scoped variable is implementation
dependent.

scope false String Scope for var.

varDom false String

Name of the exported scoped variable for
the parsed XML document. The type of the
scoped variable is
org.w3c.dom.Document.

scopeDom false String Scope for varDom.

1. Names beginning with the string "xml" are reserved by the XML specification.

Name Dyn Type Description

Chapter 11 XML Core Actions 143

For example, if one is interested in processing only the "European" customers which
represent only 10% of the original XML document received as input, it will greatly
reduce the size and complexity of the resulting DOM structure if all non-European
customers are pruned from the XML document prior to parsing.

The filter attribute accepts an object of type org.xml.sax.XMLFilter.

If configuration of the filter is desirable, it is suggested that the developer of the
filter provides a custom tag for easy configuration by a page author.

<c:import url=”http://acme.com/customers” var=”doc”/>
<x:parse doc=”${doc}” filter=”${filterEuropeanCust}”

var=”parsedDoc”/>

144 JSTL 1.1 • November 2003

11.3 <x:out>
Evaluates an XPath expression and outputs the result of the evaluation to the current
JspWriter object.

Syntax

<x:out select=”XPathExpression” [escapeXml=”{true|false}”]/>

Body Content

Empty.

Attributes

Description

The expression to be evaluated is specified via attribute select and must be in
XPath syntax. The result of the evaluation is converted to a String as if the XPath
string() function were applied, and is subsequently written to the current
JspWriter object.

This action is the equivalent of <%=...%> (display the result of an expression in the
JSP syntax) and <c:out> (display the result of an expression in the expression
language syntax).

Name Dynamic Type Description

select false String XPath expression to be evaluated.

escapeXml true boolean

Determines whether characters <,>,&,’,” in the
resulting string should be converted to their
corresponding character entity codes. Default
value is true.

Chapter 11 XML Core Actions 145

If escapeXml is true, the following character conversions are applied:

Character Character Entity Code

< <

> >

& &

‘ '

‘’ "

146 JSTL 1.1 • November 2003

11.4 <x:set>
Evaluates an XPath expression and stores the result into a scoped variable.

Syntax

<x:set select=”XPathExpression”
var=”varName” [scope=”{page|request|session|application}”]/>

Body Content

Empty.

Attributes

Description

Evaluates an XPath expression (specified via attribute select) and stores the result
into a scoped variable (specified via attributes var and scope).

The mapping of XPath types to Java types is described in Section 11.1.4.

Name Dynamic Type Description

select false String XPath expression to be evaluated.

var false String

Name of the exported scoped variable to hold
the value specified in the action. The type of the
scoped variable is whatever type the select
expression evaluates to.

scope false String Scope for var.

147

CHAPTER 12

XML Flow Control Actions
xml tag library

The core set of XML actions provides the basic functionality to easily parse and
access XML data. Another important piece of functionality is the ability to iterate
over elements in an XML document, as well as conditionally process JSP code
fragments depending on the result of an XPath expression. The XML flow control
actions provide these capabilities.

12.1 Overview
The XML flow control actions provide flow control based on the value of XPath
expressions. These actions are therefore similar to the EL flow control actions (<c:if>,
<c:choose>, and <c:forEach>), except that they apply to XPath expressions.

The <x:if> action has a select attribute that specifies an XPath expression. The
expression is evaluated and the resulting object is converted to a boolean according
to the semantics of the XPath boolean() function:

■ A number is true if an only if it is neither positive or negative zero nor NaN
■ A node-set is true if and only if it is non-empty
■ A string is true if and only if its length is non-zero

<x:if> renders its body if the result is true. For example:

<x:if select=”$customer/[location=’UK’]”>
UK based customer

</x:if>

148 JSTL 1.1 • November 2003

The <x:choose> action selects one among a number of possible alternatives. It
consists of a sequence of <x:when> elements followed by an optional <x:otherwise>.
Each <x:when> element has a single attribute, select, which specifies an XPath
expression. When a <x:choose> element is processed, each of the <x:when> elements
has its expression evaluated in turn, and the resulting object is converted to a
boolean according to the semantics of the XPath boolean function. The body of the
first, and only the first, <x:when> whose result is true is rendered.

If none of the test conditions of nested <x:when> tags evaluates to true, then the
body of an <x:otherwise> tag is evaluated, if present.

The <x:forEach> action evaluates the given XPath expression and iterates over the
result, setting the context node to each element in the iteration. For example:

<x:choose>
<x:when select=”$customer/firstName”>

Hello <x:out select=”$customer/firstName”/>
</x:when>
<x:otherwise>

Hello my friend
</x:otherwise>

</x:choose>

<x:forEach select=”$doc//author”>
<x:out select=”@name”/>

</x:forEach>

Chapter 12 XML Flow Control Actions 149

12.2 <x:if>
Evaluates the XPath expression specified in the select attribute and renders its
body content if the expression evaluates to true.

Syntax

Syntax 1: Without body content
<x:if select=”XPathExpression”

var=”varName” [scope=”{page|request|session|application}”]/>

Syntax 2: With body content
<x:if select=”XPathExpression”

[var=”varName”] [scope=”{page|request|session|application}”]>

body content

</x:if>

Body Content

JSP. If the test condition evaluates to true, the JSP container processes the body
content and then writes it to the current JspWriter.

Attributes

Constraints

■ If scope is specified, var must also be specified.

Description

Name Dynamic Type Description

select false String
The test condition that tells whether or not the
body content should be processed.

var false String
Name of the exported scoped variable for the
resulting value of the test condition. The type
of the scoped variable is Boolean.

scope false String Scope for var.

150 JSTL 1.1 • November 2003

The XPath expression specified via attribute select is evaluated, and the resulting
object is converted to a boolean according to the semantics of the XPath
boolean() function. If true, the body content is evaluated by the JSP container and
the result is written to the current JspWriter.

Chapter 12 XML Flow Control Actions 151

12.3 <x:choose>
Provides the context for mutually exclusive conditional execution.

Syntax

<x:choose>
body content (<x:when> and <x:otherwise> subtags)

</x:choose>

Body Content

JSP. The body content is processed by the JSP container (at most one of the nested
elements will be processed) and written to the current JspWriter.

Constraints

■ The body of the <x:choose> action can only contain:

■ White spaces

May appear anywhere around the <x:when> and <x:otherwise> subtags.

■ 1 or more <x:when> actions

Must all appear before <x:otherwise>

■ 0 or 1 <x:otherwise> action

Must be the last action nested within <x:choose>

Description

The <x:choose> action processes the body of the first <x:when> action whose test
condition evaluates to true. If none of the test conditions of nested <x:when> actions
evaluates to true, then the body of an <x:otherwise> action is processed, if
present.

152 JSTL 1.1 • November 2003

12.4 <x:when>
Represents an alternative within an <x:choose> action.

Syntax

<x:when select=”XPathExpression”>
body content

</x:when>

Body Content

JSP. If this is the first <x:when> action to evaluate to true within <x:choose>, the
JSP container processes the body content and then writes it to the current
JspWriter.

Attributes

Constraints

■ Must have <x:choose> as an immediate parent.
■ Must appear before an <x:otherwise> action that has the same parent.

Description

The XPath expression specified via attribute select is evaluated, and the resulting
object is converted to a boolean according to the semantics of the XPath
boolean() function. If this is the first <x:when> action to evaluate to true within
<x:choose>, the JSP container processes the body content and then writes it to the
current JspWriter.

Name Dynamic Type Description

select false String
The test condition that tells whether or
not the body content should be
processed

Chapter 12 XML Flow Control Actions 153

12.5 <x:otherwise>
Represents the last alternative within a <x:choose> action.

Syntax

<x:otherwise>
conditional block

</x:otherwise>

Body Content

JSP. If no <x:when> action nested within <x:choose> evaluates to true, the JSP
container processes the body content and then writes it to the current JspWriter.

Attributes

None.

Constraints

■ Must have <x:choose> as an immediate parent.
■ Must be the last nested action within <x:choose>.

Description

Within a <x:choose> action, if none of the nested <x:when> test conditions evaluates
to true, then the body content of the <x:otherwise> action is evaluated by the JSP
container, and the result is written to the current JspWriter.

154 JSTL 1.1 • November 2003

12.6 <x:forEach>
Evaluates the given XPath expression and repeats its nested body content over the
result, setting the context node to each element in the iteration.

Syntax

<x:forEach[var=”varName”] select=”XPathExpression”>
[varStatus=”varStatusName”]
[begin=”begin”] [end=”end”] [step=”step”]>

body content

</x:forEach>

Body Content

JSP. As long as there are items to iterate over, the body content is processed by the
JSP container and written to the current JspWriter.

Attributes

Name Dynamic Type Description

var false String

Name of the exported scoped variable for the
current item of the iteration. This scoped variable
has nested visibility. Its type depends on the
result of the XPath expression in the select
attribute.

select false String XPath expression to be evaluated.

varStatus false String

Name of the exported scoped variable for the
status of the iteration. Object exported is of type
javax.servlet.jsp.jstl.core.LoopTagSt
atus. This scoped variable has nested visibility.

begin true int
Iteration begins at the item located at the
specified index. First item of the collection has
index 0.

end true int
Iteration ends at the item located at the specified
index (inclusive).

step true int
Iteration will only process every step items of
the collection, starting with the first one.

Chapter 12 XML Flow Control Actions 155

Constraints

■ If specified, begin must be >= 0.
■ If end is specified and it is less than begin, the loop is simply not executed.
■ If specified, step must be >= 1

Null & Error Handling

■ If select is empty, a JspException is thrown.

Description

Inside the body of the tag, the context for XPath expression evaluations is obtained
as follows:
■ variable, function, and namespace bindings operate as in the rest of JSTL
■ the context node is the node whose representation would be exposed by 'var'

(whether or not the 'var' attribute is specified)
■ the context position is the iteration 'count' (with the same meaning as in

<c:forEach>)
■ the context size is equal to the number of nodes in the node-set over which

<x:forEach> is iterating

156 JSTL 1.1 • November 2003

157

CHAPTER 13

XML Transform Actions
xml tag library

The transformation of XML documents using XSLT stylesheets is popular in many
web applications. The XML transform actions provide this capability so XSLT
transformations can be performed within JSP pages.

13.1 Overview
The XML transform actions support the transformation of XML documents with
XSLT stylesheets.

In the example below, an external XML document (retrieved from an absolute URL)
is transformed by a local XSLT stylesheet (context relative path). The result of the
transformation is written to the page.

It is possible to set transformation parameters via nested <x:param> actions. For
example:

<c:import url=”http://acme.com/customers” var=”doc”/>
<c:import url=”/WEB-INF/xslt/customerList.xsl” var=”xslt”/>
<x:transform doc=”${doc}” xslt=”${xslt}”/>

<x:transform doc=”${doc}” xslt=”${xslt}”>
<x:param name=”foo” value=”foo-value”/>

</x:transform>

158 JSTL 1.1 • November 2003

It is sometimes the case that the same stylesheet transformation needs to be applied
multiple times to different source XML documents. A more efficient approach is to
process the transformation stylesheet once, and then save this "transformer" object
for successive transformations. The specification allows implementations to support
transparent caching of transformer objects to improve performance.

Chapter 13 XML Transform Actions 159

13.2 <x:transform>
Applies an XSLT stylesheet transformation to an XML document.

Syntax

Syntax 1: Without body contentt
<x:transform

{doc=”XMLDocument”|xml1=”XMLDocument”} xslt=”XSLTStylesheet”
[{docSystemId=”XMLSystemId”|xmlSystemId1=”XMLSystemId”}]
[xsltSystemId=”XSLTSystemId”]
[{var=”varName” [scope=”scopeName”]|result=”resultObject”}]

Syntax 2: With a body to specify transformation parameters
<x:transform

{doc=”XMLDocument”|xml1=”XMLDocument”} xslt=”XSLTStylesheet”
[{docSystemId=”XMLSystemId”|xmlSystemId1=”XMLSystemId”}]
[xsltSystemId=”XSLTSystemId”]
[{var=”varName” [scope=”scopeName”]|result=”resultObject”}]

<x:param> actions
</x:transform>

Syntax 3: With a body to specify XML document and optional transformation parameters
<x:transform

xslt=”XSLTStylesheet”
[{docSystemId=”XMLSystemId”|xmlSystemId1=”XMLSystemId”}]
xsltSystemId=”XSLTSystemId”
[{var=”varName” [scope=”scopeName”]|result=”resultObject”}]

XML Document to parse
optional <x:param> actions

</x:parse>

where scopeName is {page|request|session|application}

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

1. Deprecated.

160 JSTL 1.1 • November 2003

Attributes

Null & Error Handling

■ If the source XML document is null or empty, a JspException is thrown.
■ If the source XSLT document is null or empty, a JspException is thrown.

Name Dyn Type Description

doc true

String, Reader,
javax.xml.transform.Source,
org.w3c.dom.Document, or
object exported by
<x:parse>, <x:set>.

Source XML document to be
transformed. (If exported by
<x:set>, it must correspond
to a well-formed XML
document, not a partial
document.)

xml true

String, Reader,
javax.xml.transform.Source,
org.w3c.dom.Document, or
object exported by
<x:parse>, <x:set>.

Deprecated1. Use attribute
doc instead.

1. Names beginning with the string "xml" are reserved by the XML specification.

xslt true
String, Reader or
javax.xml.transform.Source

Transformation stylesheet as
a String, Reader, or
Source object.

docSystemId true String
The system identifier (URI)
for parsing the XML
document.

xmlSystemId true String
Deprecated1. Use attribute
docSystemId instead.

xsltSystemId true String
The system identifier (URI)
for parsing the XSLT
stylesheet.

var false String

Name of the exported
scoped variable for the
transformed XML
document. The type of the
scoped variable is
org.w3c.dom.Document.

scope false String Scope for var.

result true
javax.xml.transform.
Result

Object that captures or
processes the transformation
result.

Chapter 13 XML Transform Actions 161

Description

The <x:transform> tag applies a transformation to an XML document (attribute doc
or the action’s body content), given a specific XSLT stylesheet (attribute xslt). It
does not perform any validation against DTD's or Schemas.

Nothing prevents an implementation from caching Transformer objects across
invocations of <x:transform>, though implementations should be careful they take
into account both the xslt and xsltSystemId attributes when deciding whether to
use a cached Transformer or produce a new one. An implementation may assume
that any external entities that were referenced during parsing will not change values
during the life of the application.

The result of the transformation is written to the page by default. It is also possible
to capture the result of the transformation in two other ways:

■ javax.xml.transform.Result object specified by the result attribute.
■ org.w3c.dom.Document object saved in the scoped variable specified by the

var and scope attributes.

162 JSTL 1.1 • November 2003

13.3 <x:param>
Set transformation parameters. Nested action of <x:transform>.

Syntax

Syntax 1: Parameter value specified in attribute “value”
<x:param name=”name” value=”value”/>

Syntax 2: Parameter value specified in the body content
<x:param name=”name”>

parameter value
</x:param>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

Description

The <x:param> action must be nested within <x:transform> to set
transformation parameters. The value of the parameter can be specified either via
the value attribute, or via the action’s body content.

Name Dynamic Type Description

name true String Name of the transformation parameter.

value true Object Value of the parameter.

163

CHAPTER 14

Tag Library Validators
JSP 1.2 provides tag library validators (TLVs) as a mechanism for a tag library to
enforce constraints on the JSP document (the "XML view") associated with any JSP
page into which the tag library is imported. While the expectation is that TLVs used
by a tag library will typically enforce multi-tag constraints related to usage of the
library's tags themselves, a TLV is free to perform arbitrary validation of JSP
documents. A TLV returns to the container information about which elements, if
any, are in violation of its specific constraints, along with textual descriptions of the
syntactic violation.

JSTL provides TLVs that perform “reusable” validation; i.e. generic validation that
custom tag-library authors might wish to incorporate in their own tag libraries.
These tag libraries do not necessarily need to be substantial collections of tags; a
taglib may exist simply to provide site-specific validation logic. Just like tag libraries
whose primary focus is to provide new tags, such "validation-centric" tag libraries
may be configured and used by "back-end" developers in order to affect the "front-
end" JSP page author's environment.

This chapter covers the JSTL tag library validators.

14.1 Overview
JSTL exposes via TLVs two simple types of validations. These TLV classes may be
used in custom tag-library descriptors (TLDs) to restrict the page author's activities.
The two types of validation provided in this fashion are:

■ ScriptFree (see Chapter 16 “Java APIs”)
Assurance of script-free pages

■ PermittedTaglibs (see Chapter 16 “Java APIs”)
Enumeration of permitted tag libraries (including JSTL) on a page

164 JSTL 1.1 • November 2003

For example, to prevent a JSP page from using JSP scriptlets and JSP declarations,
but still allow expressions, a developer could create the following TLD:

Note that in JSP 2.0, scripting elements can also be disabled through the use of the
scripting-invalid configuration element (see the JSP specification for details).

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=

"http://java.sun.com/xml/ns/j2ee web jsptaglibrary_2_0.xsd"
 version="2.0">

<description>
Validates JSP pages to prohibit use of scripting elements.

</description>
<tlib-version>1.0</tlib-version>
<jsp-version>2.0</jsp.version>
<short-name>scriptfree</short-name>
<uri>http://acme.com/scriptfree</uri>

<validator>
<validator-class>

javax.servlet.jsp.jstl.tlv.ScriptFreeTLV
</validator-class>
<init-param>

<param-name>allowDeclarations</param-name>
<param-value>false</param-value>

</init-param>
<init-param>

<param-name>allowScriptlets</param-name>
<param-value>false</param-value>

</init-param>
<init-param>

<param-name>allowExpressions</param-name>
<param-value>true</param-value>

</init-param>
<init-param>

<param-name>allowRTExpressions</param-name>
<param-value>true</param-value>

</init-param>
</validator>

</taglib>

Chapter 14 Tag Library Validators 165

Similarly, to restrict a JSP page to a set of permitted tag-libraries (in the example
below, the JSTL “EL” tag libraries), a developer could create the following TLD:

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=

"http://java.sun.com/xml/ns/j2ee web jsptaglibrary_2_0.xsd"
 version="2.0">

<description>
Restricts JSP pages to the JSTL tag libraries

</description>
<tlib-version>1.0</tlib-version>
<jsp-version>2.0</jsp.version>
<short-name>jstl taglibs only</scriptfree>
<uri>http://acme.com/jstlTaglibsOnly</uri>

<validator>
<validator-class>

javax.servlet.jsp.jstl.tlv.PermittedTaglibsTLV
</validator-class>
<init-param>

<param-name>permittedTaglibs</param-name>
<param-value>

http://java.sun.com/jstl/core
http://java.sun.com/jstl/xml
http://java.sun.com/jstl/fmt
http://java.sun.com/jstl/sql

</param-value>
</init-param>

</validator>
</taglib>

166 JSTL 1.1 • November 2003

167

CHAPTER 15

Functions
function tag library

Just like custom actions allow developers to extend the JSP syntax with their own
customized behavior, the expression language defined in JSP 2.0 introduces the
notion of functions to allow developers to extend the capabilities of the Expression
Language.

JSTL is about the standardization, via these extension mechanisms, of behavior that
is commonly needed by page authors. In addition to defining a standard set of
actions, JSTL therefore also defines a standardized set of EL functions. These
functions are described in this chapter.

15.1 Overview
The JSTL functions are all grouped within the function tag library. They cover
various domains of functionality described below.

15.1.1 The length Function
A feature sorely missed in JSTL 1.0 was the ability to easily get the size of a
collection. While the java.util.Collection interface defines a size() method,
it unfortunately does not conform to the JavaBeans architecture design pattern for
properties and cannot be accessed via the expression language.

168 JSTL 1.1 • November 2003

The length function has been designed to be very similar to the use of "length" in
EcmaScript. It can be applied to any object supported by the JSTL iteration action
<c:forEach>1 and returns the length of the collection. When applied to a String, it
returns the number of characters in the string.

A sample use of length is shown in the example below where scoped variable
athletes is a collection of Athletes objects.

15.1.2 String Manipulation Functions
String manipulation functions allow page authors to:
■ Change the capitalization of a string (toLowerCase, toUpperCase)
■ Get a subset of a string (substring, substringAfter, substringBefore)
■ Trim a string (trim)
■ Replace characters in a string (replace)
■ Check if a string contains another string (indexOf, startsWith, endsWith,

contains, containsIgnoreCase)
■ split a string (split) into an array, and join an array into a string (join)
■ Escape XML characters in the string (escapeXml)

1. Note that the support in <c:forEach> for strings representing lists of coma separated values has been
deprecated. The proper way to process strings of tokens is via <c:forTokens> or via functions split and
join.

There are ${fn:length(athletes)} athletes representing ${country}

Chapter 15 Functions 169

The example below shows simple uses of these functions.

<%-- truncate name to 30 chars and display it in uppercase --%>
${fn:toUpperCase(fn:substring(name, 0, 30))}

<%-- Display the text value prior to the first ’*’ character --%>
${fn:substringBefore(text, ’*’)}

<%-- Scoped variable "custId" may contain whitespaces at the
beginning or end. Trim it first, otherwise we end up with +'s in
the URL --%>
<c:url var="myUrl" value="${base}/cust">

<c:param name="custId" value="${fn:trim(custId)}"/>
</c:url>

<%-- Display the text in between brackets --%>
${fn:substring(text, fn:indexOf(text, ’(’)+1,

fn:indexOf(text, ’)’))}

<%-- Display the name if it contains the search string --%>
<c:if test="${fn:containsIgnoreCase(name, searchString)}">
Found name: ${name}

</c:if>

<%-- Display the last 10 characters of the text value --%>
${fn:substring(text, fn:length(text)-10)}

<%-- Display text value with bullets instead of ’-’ --%>
${fn:replace(text, ’-’, ’•’)}

170 JSTL 1.1 • November 2003

While one can always use <c:out> to make sure that XML characters are properly
escaped, the function escapeXml provides a syntax that is more concise as can be
seen in the following example:

<%-- Escape XML characters when displaying the value of a
request parameter (avoid cross-site scripting) --%>

<input name="userName" value="${fn:escapeXml(param:userName)}">

<%-- Escape XML characters when passing an attribute value to
an action --%>

<%-- Using <c:out> with <c:set>--%>
<c:set var="nameEscaped">

<c:out value="${name}"/>
</c:set>
<my:tag name="${nameEscaped}"/>

<%-- Using <c:out> with <jsp:attribute>--%>
<my:tag>

<jsp:attribute name="name">
<c:out value="${name}"/>

</jsp:attribute>
</my:tag>

<%-- Using fn:escapeXml --%>
<my:tag title="${fn:escapeXml(name)}"/>

Chapter 15 Functions 171

15.2 fn:contains
Tests if a string contains the specified substring.

Syntax

fn:contains(string, substring) → boolean

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.
■ If substring is null, it is processed as an empty string.

Description

Returns true if the character sequence represented by the substring argument exists
in the character sequence represented by the string argument, false otherwise.

If substring is empty, this matches the beginning of the string and the value
returned is true.

Essentially, fn:contains returns the value of:

fn:indexOf(string, substring) != -1.

Argument Type Description

string String The input string on which the function is applied.

substring String The substring tested for.

Result boolean
true if the character sequence represented by the
substring argument exists in the character sequence
represented by the string argument, false otherwise.

172 JSTL 1.1 • November 2003

15.3 fn:containsIgnoreCase
Tests if a string contains the specified substring in a case insensitive way.

Syntax

fn:containsIgnoreCase(string, substring) → boolean

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.
■ If substring is null, it is processed as an empty string.

Description

The behavior is the same as fn:contains, except that the comparison is done in a
case insensitive way, as in:
fn:contains(fn:toUpperCase(string), fn:toUpperCase(substring)).

Argument Type Description

string String The input string on which the function is applied.

substring String The substring tested for.

Result boolean

true if the character sequence represented by the
substring argument exists in the character sequence
represented by the string argument ignoring case
differences, false otherwise.

Chapter 15 Functions 173

15.4 fn:endsWith
Tests if a string ends with the specified suffix.

Syntax

fn:endsWith(string, suffix) → boolean

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.
■ If substring is null, it is processed as an empty string.

Description

Behavior is similar to fn:startsWith, except that the substring must be at the end
of the input string.

If suffix is empty, this matches the end of the string and the value returned is true.

Argument Type Description

string String The input string on which the function is applied.

suffix String The suffix to be matched.

Result boolean
true if the character sequence represented by the
suffix argument is a suffix of the character sequence
represented by the string argument, false otherwise.

174 JSTL 1.1 • November 2003

15.5 fn:escapeXml
Escapes characters that could be interpreted as XML markup.

Syntax

fn:escapeXml(string) → String

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.

Description

Escapes characters that could be interpreted as XML markup. The conversions are
the same as the ones applied by <c:out> when attribute escapeXml is set to true.
See Section 4.2.

If string is an empty string, an empty string is returned.

Argument Type Description

string String The input string on which the conversion is applied.

Result String Converted string.

Chapter 15 Functions 175

15.6 fn:indexOf
Returns the index within a string of the first occurrence of a specified substring.

Syntax

fn:indexOf(string, substring) → int

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.
■ If substring is null, it is processed as an empty string.

Description

Returns the index (0-based) within a string of the first occurrence of a specified
substring according to the semantics of method indexOf(substring) of the Java
class java.lang.String, with the exception of the "Null and Error Handling"
processing described above.

If substring is empty, this matches the beginning of the string and the value
returned is 0.

Argument Type Description

string String The input string on which the function is applied.

substring String The substring to search for in the input string.

Result int
If the substring argument is a substring of the input string,
returns the index of the first character of the first such
substring; if it does not occur as a substring, -1 is returned.

176 JSTL 1.1 • November 2003

15.7 fn:join
Joins all elements of an array into a string.

Syntax

fn:join(array, separator) → String

Arguments & Result

Null & Error Handling

■ If array is null, an empty string is returned.
■ If separator is null, it is processed as an empty string.

Description

Joins all elements of the string array into a string.

If separator is an empty string, then the elements are joined together without any
separator.

Argument Type Description

array String[] Array of strings to be joined.

separator String
String to separate each element of the
array in the resulting string.

Result String All array elements joined into one string.

Chapter 15 Functions 177

15.8 fn:length
Returns the number of items in a collection, or the number of characters in a string.

Syntax

fn:length(input) → integer

Arguments & Result

Null & Error Handling

■ If input is null, it is treated as an empty collection and the value returned is 0.
■ If input is an empty string, the value returned is 0.

Argument Type Description

input
Any of the types supported for the items
attribute in the <c:forEach> action, or
String.

The input collection or string
on which the length is
computed.

Result int
Length of the collection or the
string.

178 JSTL 1.1 • November 2003

15.9 fn:replace
Returns a string resulting from replacing in an input string all occurrences of a
"before" substring into an "after" substring.

Syntax

fn:replace(inputString, beforeSubstring, afterSubstring) → String

Arguments & Result

Null & Error Handling

■ If inputString is null, it is processed as an empty string.
■ If beforeSubstring is null, it is processed as an empty string.
■ If afterSubstring is null, it is processed as an empty string.

Description

All occurrences of beforeSubstring are replaced by afterSubstring. The text
replaced is not reprocessed for further replacements.

If inputstring is an empty string, an empty string is returned.

If beforeSubstring is an empty string, the input string is returned.

If afterSubstring is an empty string, all occurrences of beforeSubstring are
removed from inputString.

Argument Type Description

inputString String
The input string on which the replace function is
applied.

beforeSubstring String The "before" substring to be replaced.

afterSubstring String
The "after" substring that replaces the "before"
substring.

Result String
The string that results from replacing
beforeSubstring with afterSubstring.

Chapter 15 Functions 179

15.10 fn:split
Splits a string into an array of substrings.

Syntax

fn:split(string, delimiters) → String[]

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.
■ If delimiters is null, it is processed as an empty string.

Description

Breaks a string into tokens according to the semantics of the Java class
java.util.StringTokenizer, with the exception of the "Null and Error
Handling" described above.

If the input string is empty, the array returned contains one element consisting of an
empty string (no splitting occurred, original string is returned).

If delimiters is an empty string, the array returned contains one element
consisting of the input string (no splitting occurred, original string is returned).

Delimiter characters themselves are not treated as tokens, and are not included in
any token.

Argument Type Description

string String
The input string that gets split into
an array of substrings.

delimiters String
Delimiter characters used to split
the string.

Result String[] Array of strings.

180 JSTL 1.1 • November 2003

15.11 fn:startsWith
Tests if a string starts with the specified prefix.

Syntax

fn:startsWith(string, prefix) → boolean

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.
■ If prefix is null, it is processed as an empty string.

Description

Tests if an input string starts with the specified prefix according to the semantics of
method startsWith(String prefix) of the Java class java.lang.String,
with the exception of the "Null and Error Handling" processing described above.

If prefix is empty, this matches the beginning of the string and the value returned
is true.

.

Argument Type Description

string String The input string on which the function is applied.

prefix String The prefix to be matched.

Result boolean
true if the character sequence represented by the
prefix argument is a prefix of the character sequence
represented by the string argument, false otherwise.

Chapter 15 Functions 181

15.12 fn:substring
Returns a subset of a string.

Syntax

fn:substring(string, beginIndex, endIndex) → String

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.
■ If beginIndex is greater than the last index of the input string, an empty string

is returned.
■ If beginIndex is less than 0, its value is adjusted to be 0.
■ If endIndex is less than 0 or greater than the length of the input string, its value

is adjusted to be the length of the input string (the substring therefore starts at
beginIndex and extends to the end of the input string).

■ If endIndex is less than beginIndex, an empty string is returned.

Description

Returns a substring of the input string according to the semantics of method
substring() of the Java class java.lang.String, with the exception of the "Null
and Error Handling" processing described above.

Using a 0-based indexing scheme, the substring begins at the specified beginIndex
and extends to the character at index endIndex-1. The length of the substring is
therefore endIndex-beginIndex.

It is suggested to use the value -1 for endIndex to extend the substring to the end of
the input string.

Argument Type Description

string String
The input string on which the substring function is
applied.

beginIndex int The beginning index (0-based), inclusive.

endIndex int The ending index (0-based), exclusive .

Result String The substring of the input string.

182 JSTL 1.1 • November 2003

15.13 fn:substringAfter
Returns a subset of a string following a specific substring.

Syntax

fn:substringAfter(string, substring) → String

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.
■ If substring is null, it is processed as an empty string.

Description

The substring returned starts at the first character after the substring matched in the
input string, and extends up to the end of the input string.

If string is an empty string, an empty string is returned.

If substring is an empty string, it matches the beginning of the input string and
the input string is returned. This is consistent with the behavior of function
indexOf, where an empty substring returns index 0.

If substring does not occur in the input string, an empty string is returned.

Argument Type Description

string String
The input string on which the substring function is
applied.

substring String
The substring that delimits the beginning of the subset
of the input string to be returned.

Result String The substring of the input string.

Chapter 15 Functions 183

15.14 fn:substringBefore
Returns a subset of a string before a specific substring.

Syntax

fn:substringBefore(string, substring) → String

Arguments & Result

Null & Error Handling

■ If string is null, it is processed as an empty string.
■ If substring is null, it is processed as an empty string.

Description

The substring returned starts at the first character in the input string and extends up
to the character just before the substring matched in the input string.

If string is an empty string, an empty string is returned.

If substring is an empty string, it matches the beginning of the input string and an
empty string is returned. This is consistent with the behavior of function indexOf,
where an empty substring returns index 0.

If substring does not occur in the input string, an empty string is returned.

Argument Type Description

string String
The input string on which the substring function is
applied.

substring String
The substring that delimits the end of subset of the input
string to be returned.

Result String The substring of the input string.

184 JSTL 1.1 • November 2003

15.15 fn:toLowerCase
Converts all of the characters of a string to lower case.

Syntax

fn:toLowerCase(string) → String

Arguments & Result

Null & Error Handling

■ If string is null, it is treated as an empty string and an empty string is returned.

Description

Converts all of the characters of the input string to lower case according to the
semantics of method toLowerCase() of the Java class java.lang.String.

Argument Type Description

string String
The input string on which the transformation to lower
case is applied.

Result String The input string transformed to lower case.

Chapter 15 Functions 185

15.16 fn:toUpperCase
Converts all of the characters of a string to upper case.

Syntax

fn:toUpperCase(string) → String

Arguments & Result

Null & Error Handling

■ If string is null, it is treated as an empty string and an empty string is returned.

Description

Converts all of the characters of the input string to upper case according to the
semantics of method toUpperCase() of the Java class java.lang.String.

Argument Type Description

string String
The input string on which the the transformation to
upper case is applied.

Result String The input string transformed to upper case.

186 JSTL 1.1 • November 2003

15.17 fn:trim
Removes white space from both ends of a string.

Syntax

fn:trim(string) → String

Arguments & Result

Null & Error Handling

■ If string is null, it is treated as an empty string and an empty string is returned.

Description

Removes white space from both ends of a string according to the semantics of
method trim() of the Java class java.lang.String.

Argument Type Description

string String The input string on which the the trim is applied.

Result String The trimmed string.

187

CHAPTER 16

Java APIs
This chapter describes the Java APIs exposed by the JSTL specification. The content
of this chapter is generated automatically from Javadoc annotations embedded into
the actual Java classes and interfaces of the implementation. This ensures that both
the specification and implementation are synchronized.

188 JSTL 1.1 • November 2003

189

Package

javax.servlet.jsp.jstl.core

Class Summary

Interfaces

LoopTag199 JSTL allows developers to write custom iteration tags by implementing the LoopTag
interface.

LoopTagStatus200 Exposes the current status of an iteration.

Classes

ConditionalTagSupport1
90

Abstract class that facilitates implementation of conditional actions where the boolean
result is exposed as a JSP scoped variable.

Config193 Class supporting access to configuration settings.

LoopTagSupport203 Base support class to facilitate implementation of iteration tags.

190

javax.servlet.jsp.jstl.core

ConditionalTagSupport
Declaration
public abstract class ConditionalTagSupport extends TagSupport

java.lang.Object
|
+--TagSupport

|
+--javax.servlet.jsp.jstl.core.ConditionalTagSupport

Description
Abstract class that facilitates implementation of conditional actions where the boolean result is exposed as a JSP
scoped variable. The boolean result may then be used as the test condition in a <c:when> action.

This base class provides support for:

• Conditional processing of the action’s body based on the returned value of the abstract method
condition().

• Storing the result of condition() as a Boolean object into a JSP scoped variable identified by
attributes var and scope.

Member Summary

Constructors
ConditionalTagSupport()191

Base constructor to initialize local state.

Methods
protected abstract

boolean
condition()191

Subclasses implement this method to compute the boolean result of the conditional
action.

 int doStartTag()191
Includes its body if condition() evaluates to true.

 void release()191
Releases any resources this ConditionalTagSupport may have (or inherit).

 void setScope(java.lang.String scope)191
Sets the ’scope’ attribute.

 void setVar(java.lang.String var)191
Sets the ’var’ attribute.

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

191

Constructors

ConditionalTagSupport()

public ConditionalTagSupport()

Base constructor to initialize local state. As with TagSupport, subclasses should not implement
constructors with arguments, and no-argument constructors implemented by subclasses must call the
superclass constructor.

Methods

condition()

protected abstract boolean condition()

throws JspTagException

Subclasses implement this method to compute the boolean result of the conditional action. This method is
invoked once per tag invocation by doStartTag().

Returns: a boolean representing the condition that a particular subclass uses to drive its conditional logic.

Throws:
JspTagException

doStartTag()

public int doStartTag()

throws JspException

Includes its body if condition() evaluates to true.

Throws:
JspException

release()

public void release()

Releases any resources this ConditionalTagSupport may have (or inherit).

setScope(String)

public void setScope(java.lang.String scope)

Sets the ’scope’ attribute.

Parameters:
scope - Scope of the ’var’ attribute

setVar(String)

public void setVar(java.lang.String var)

Sets the ’var’ attribute.

192

Parameters:
var - Name of the exported scoped variable storing the result of condition().

193

javax.servlet.jsp.jstl.core

Config
Declaration
public class Config

java.lang.Object
|
+--javax.servlet.jsp.jstl.core.Config

Description
Class supporting access to configuration settings.

Member Summary

Fields
static

java.lang.String
FMT_FALLBACK_LOCALE194

Name of configuration setting for fallback locale
static

java.lang.String
FMT_LOCALE194

Name of configuration setting for application- (as opposed to browser-) based
preferred locale

static
java.lang.String

FMT_LOCALIZATION_CONTEXT194
Name of configuration setting for i18n localization context

static
java.lang.String

FMT_TIME_ZONE195
Name of localization setting for time zone

static
java.lang.String

SQL_DATA_SOURCE195
Name of configuration setting for SQL data source

static
java.lang.String

SQL_MAX_ROWS195
Name of configuration setting for maximum number of rows to be included in SQL
query result

Constructors
Config()195

Methods
static

java.lang.Object
find(PageContext pc, java.lang.String name)195

Finds the value associated with a specific configuration setting identified by its context
initialization parameter name.

static
java.lang.Object

get(javax.servlet.http.HttpSession session, java.lang.String
name)195

Looks up a configuration variable in the “session” scope.
static

java.lang.Object
get(PageContext pc, java.lang.String name, int scope)196

Looks up a configuration variable in the given scope.
static

java.lang.Object
get(javax.servlet.ServletContext context, java.lang.String
name)196

Looks up a configuration variable in the “application” scope.
static

java.lang.Object
get(javax.servlet.ServletRequest request, java.lang.String
name)196

Looks up a configuration variable in the “request” scope.

194

Fields

FMT_FALLBACK_LOCALE

public static final java.lang.String FMT_FALLBACK_LOCALE

Name of configuration setting for fallback locale

FMT_LOCALE

public static final java.lang.String FMT_LOCALE

Name of configuration setting for application- (as opposed to browser-) based preferred locale

FMT_LOCALIZATION_CONTEXT

public static final java.lang.String FMT_LOCALIZATION_CONTEXT

Name of configuration setting for i18n localization context

static void remove(javax.servlet.http.HttpSession session,
java.lang.String name)197

Removes a configuration variable from the “session” scope.
static void remove(PageContext pc, java.lang.String name, int scope)197

Removes a configuration variable from the given scope.
static void remove(javax.servlet.ServletContext context, java.lang.String

name)197
Removes a configuration variable from the “application” scope.

static void remove(javax.servlet.ServletRequest request, java.lang.String
name)197

Removes a configuration variable from the “request” scope.
static void set(javax.servlet.http.HttpSession session, java.lang.String

name, java.lang.Object value)197
Sets the value of a configuration variable in the “session” scope.

static void set(PageContext pc, java.lang.String name, java.lang.Object
value, int scope)198

Sets the value of a configuration variable in the given scope.
static void set(javax.servlet.ServletContext context, java.lang.String

name, java.lang.Object value)198
Sets the value of a configuration variable in the “application” scope.

static void set(javax.servlet.ServletRequest request, java.lang.String
name, java.lang.Object value)198

Sets the value of a configuration variable in the “request” scope.

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary

195

FMT_TIME_ZONE

public static final java.lang.String FMT_TIME_ZONE

Name of localization setting for time zone

SQL_DATA_SOURCE

public static final java.lang.String SQL_DATA_SOURCE

Name of configuration setting for SQL data source

SQL_MAX_ROWS

public static final java.lang.String SQL_MAX_ROWS

Name of configuration setting for maximum number of rows to be included in SQL query result

Constructors

Config()

public Config()

Methods

find(PageContext, String)

public static java.lang.Object find(PageContext pc, java.lang.String name)

Finds the value associated with a specific configuration setting identified by its context initialization
parameter name.

For each of the JSP scopes (page, request, session, application), get the value of the configuration variable
identified by name using method get(). Return as soon as a non-null value is found. If no value is found,
get the value of the context initialization parameter identified by name.

Parameters:
pc - Page context in which the configuration setting is to be searched

name - Context initialization parameter name of the configuration setting

Returns: The java.lang.Object associated with the configuration setting identified by name, or null
if it is not defined.

get(HttpSession, String)

public static java.lang.Object get(javax.servlet.http.HttpSession session,

java.lang.String name)

Looks up a configuration variable in the “session” scope.

The lookup of configuration variables is performed as if each scope had its own name space, that is, the
same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
session - Session object in which the configuration variable is to be looked up

196

name - Configuration variable name

Returns: The java.lang.Object associated with the configuration variable, or null if it is not
defined, if session is null, or if the session is invalidated.

get(PageContext, String, int)

public static java.lang.Object get(PageContext pc, java.lang.String name, int scope)

Looks up a configuration variable in the given scope.

The lookup of configuration variables is performed as if each scope had its own name space, that is, the
same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
pc - Page context in which the configuration variable is to be looked up

name - Configuration variable name

scope - Scope in which the configuration variable is to be looked up

Returns: The java.lang.Object associated with the configuration variable, or null if it is not
defined.

get(ServletContext, String)

public static java.lang.Object get(javax.servlet.ServletContext context,

java.lang.String name)

Looks up a configuration variable in the “application” scope.

The lookup of configuration variables is performed as if each scope had its own name space, that is, the
same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
context - Servlet context in which the configuration variable is to be looked up

name - Configuration variable name

Returns: The java.lang.Object associated with the configuration variable, or null if it is not
defined.

get(ServletRequest, String)

public static java.lang.Object get(javax.servlet.ServletRequest request,

java.lang.String name)

Looks up a configuration variable in the “request” scope.

The lookup of configuration variables is performed as if each scope had its own name space, that is, the
same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
request - Request object in which the configuration variable is to be looked up

name - Configuration variable name

Returns: The java.lang.Object associated with the configuration variable, or null if it is not
defined.

197

remove(HttpSession, String)

public static void remove(javax.servlet.http.HttpSession session, java.lang.String name)

Removes a configuration variable from the “session” scope.

Removing a configuration variable is performed as if each scope had its own namespace, that is, the same
configuration variable name in one scope does not impact one stored in a different scope.

Parameters:
session - Session object from which the configuration variable is to be removed

name - Configuration variable name

remove(PageContext, String, int)

public static void remove(PageContext pc, java.lang.String name, int scope)

Removes a configuration variable from the given scope.

Removing a configuration variable is performed as if each scope had its own namespace, that is, the same
configuration variable name in one scope does not impact one stored in a different scope.

Parameters:
pc - Page context from which the configuration variable is to be removed

name - Configuration variable name

scope - Scope from which the configuration variable is to be removed

remove(ServletContext, String)

public static void remove(javax.servlet.ServletContext context, java.lang.String name)

Removes a configuration variable from the “application” scope.

Removing a configuration variable is performed as if each scope had its own namespace, that is, the same
configuration variable name in one scope does not impact one stored in a different scope.

Parameters:
context - Servlet context from which the configuration variable is to be removed

name - Configuration variable name

remove(ServletRequest, String)

public static void remove(javax.servlet.ServletRequest request, java.lang.String name)

Removes a configuration variable from the “request” scope.

Removing a configuration variable is performed as if each scope had its own namespace, that is, the same
configuration variable name in one scope does not impact one stored in a different scope.

Parameters:
request - Request object from which the configuration variable is to be removed

name - Configuration variable name

set(HttpSession, String, Object)

public static void set(javax.servlet.http.HttpSession session, java.lang.String name,

java.lang.Object value)

Sets the value of a configuration variable in the “session” scope.

198

Setting the value of a configuration variable is performed as if each scope had its own namespace, that is,
the same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
session - Session object in which the configuration variable is to be set

name - Configuration variable name

value - Configuration variable value

set(PageContext, String, Object, int)

public static void set(PageContext pc, java.lang.String name, java.lang.Object value,

int scope)

Sets the value of a configuration variable in the given scope.

Setting the value of a configuration variable is performed as if each scope had its own namespace, that is,
the same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
pc - Page context in which the configuration variable is to be set

name - Configuration variable name

value - Configuration variable value

scope - Scope in which the configuration variable is to be set

set(ServletContext, String, Object)

public static void set(javax.servlet.ServletContext context, java.lang.String name,

java.lang.Object value)

Sets the value of a configuration variable in the “application” scope.

Setting the value of a configuration variable is performed as if each scope had its own namespace, that is,
the same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
context - Servlet context in which the configuration variable is to be set

name - Configuration variable name

value - Configuration variable value

set(ServletRequest, String, Object)

public static void set(javax.servlet.ServletRequest request, java.lang.String name,

java.lang.Object value)

Sets the value of a configuration variable in the “request” scope.

Setting the value of a configuration variable is performed as if each scope had its own namespace, that is,
the same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
request - Request object in which the configuration variable is to be set

name - Configuration variable name

value - Configuration variable value

199

javax.servlet.jsp.jstl.core

LoopTag
Declaration
public interface LoopTag

All Known Implementing Classes: LoopTagSupport203

Description
JSTL allows developers to write custom iteration tags by implementing the LoopTag interface. This is not to be
confused with javax.servlet.jsp.tagext.IterationTag as defined in JSP 1.2. LoopTag
establishes a mechanism for iteration tags to be recognized and for type-safe implicit collaboration with custom
subtags.

In most cases, it will not be necessary to implement this interface manually, for a base support class
(LoopTagSupport) is provided to facilitate implementation.

Methods

getCurrent()

public java.lang.Object getCurrent()

Retrieves the current item in the iteration. Behaves idempotently; calling getCurrent() repeatedly should
return the same Object until the iteration is advanced. (Specifically, calling getCurrent() does not advance
the iteration.)

Returns: the current item as an object

getLoopStatus()

public javax.servlet.jsp.jstl.core.LoopTagStatus200 getLoopStatus()

Retrieves a ’status’ object to provide information about the current round of the iteration.

Returns: The LoopTagStatus for the current LoopTag.

Member Summary

Methods
 java.lang.Object getCurrent()199

Retrieves the current item in the iteration.
 LoopTagStatus getLoopStatus()199

Retrieves a ’status’ object to provide information about the current round of the
iteration.

200

javax.servlet.jsp.jstl.core

LoopTagStatus
Declaration
public interface LoopTagStatus

Description
Exposes the current status of an iteration. JSTL provides a mechanism for LoopTags to return information about
the current index of the iteration and convenience methods to determine whether or not the current round is
either the first or last in the iteration. It also lets authors use the status object to obtain information about the
iteration range, step, and current object.

Environments that require more status can extend this interface.

Methods

getBegin()

public java.lang.Integer getBegin()

Returns the value of the ’begin’ attribute for the associated tag, or null if no ’begin’ attribute was specified.

Returns: the ’begin’ value for the associated tag, or null if no ’begin’ attribute was specified

Member Summary

Methods
 java.lang.Integer getBegin()200

Returns the value of the ’begin’ attribute for the associated tag, or null if no ’begin’
attribute was specified.

 int getCount()201
Retrieves the “count” of the current round of the iteration.

 java.lang.Object getCurrent()201
Retrieves the current item in the iteration.

 java.lang.Integer getEnd()201
Returns the value of the ’end’ attribute for the associated tag, or null if no ’end’
attribute was specified.

 int getIndex()201
Retrieves the index of the current round of the iteration.

 java.lang.Integer getStep()201
Returns the value of the ’step’ attribute for the associated tag, or null if no ’step’
attribute was specified.

 boolean isFirst()201
Returns information about whether the current round of the iteration is the first one.

 boolean isLast()202
Returns information about whether the current round of the iteration is the last one.

201

getCount()

public int getCount()

Retrieves the “count” of the current round of the iteration. The count is a relative, 1-based sequence number
identifying the current “round” of iteration (in context with all rounds the current iteration will perform).

As an example, an iteration with begin = 5, end = 15, and step = 5 produces the counts 1, 2, and 3 in that
order.

Returns: the 1-based count of the current round of the iteration

getCurrent()

public java.lang.Object getCurrent()

Retrieves the current item in the iteration. Behaves idempotently; calling getCurrent() repeatedly should
return the same Object until the iteration is advanced. (Specifically, calling getCurrent() does not advance
the iteration.)

Returns: the current item as an object

getEnd()

public java.lang.Integer getEnd()

Returns the value of the ’end’ attribute for the associated tag, or null if no ’end’ attribute was specified.

Returns: the ’end’ value for the associated tag, or null if no ’end’ attribute was specified

getIndex()

public int getIndex()

Retrieves the index of the current round of the iteration. If iteration is being performed over a subset of an
underlying array, java.lang.Collection, or other type, the index returned is absolute with respect to the
underlying collection. Indices are 0-based.

Returns: the 0-based index of the current round of the iteration

getStep()

public java.lang.Integer getStep()

Returns the value of the ’step’ attribute for the associated tag, or null if no ’step’ attribute was specified.

Returns: the ’step’ value for the associated tag, or null if no ’step’ attribute was specified

isFirst()

public boolean isFirst()

Returns information about whether the current round of the iteration is the first one. This current round may
be the ’first’ even when getIndex() != 0, for ’index’ refers to the absolute index of the current ’item’ in the
context of its underlying collection. It is always that case that a true result from isFirst() implies getCount()
== 1.

Returns: true if the current round is the first in the iteration, false otherwise.

202

isLast()

public boolean isLast()

Returns information about whether the current round of the iteration is the last one. As with isFirst(),
subsetting is taken into account. isLast() doesn’t necessarily refer to the status of the underlying Iterator; it
refers to whether or not the current round will be the final round of iteration for the tag associated with this
LoopTagStatus.

Returns: true if the current round is the last in the iteration, false otherwise.

203

javax.servlet.jsp.jstl.core

LoopTagSupport
Declaration
public abstract class LoopTagSupport extends TagSupport implements LoopTag199

java.lang.Object
|
+--TagSupport

|
+--javax.servlet.jsp.jstl.core.LoopTagSupport

All Implemented Interfaces: LoopTag199

Description
Base support class to facilitate implementation of iteration tags.

Since most iteration tags will behave identically with respect to actual iterative behavior, JSTL provides this
base support class to facilitate implementation. Many iteration tags will extend this and merely implement the
hasNext() and next() methods to provide contents for the handler to iterate over.

In particular, this base class provides support for:

• Iteration control, based on protected prepare(), next(), and hasNext() methods

• Subsetting (begin, end, step>functionality, including validation of subset parameters for sensibility)

• item retrieval (getCurrent())

• status retrieval (LoopTagStatus)

• exposing attributes (set by var and varStatus attributes)

In providing support for these tasks, LoopTagSupport contains certain control variables that act to modify
the iteration. Accessors are provided for these control variables when the variables represent information
needed or wanted at translation time (e.g., var, varStatus). For other variables, accessors cannot be
provided here since subclasses may differ on their implementations of how those accessors are received. For
instance, one subclass might accept a String and convert it into an object of a specific type by using an
expression evaluator; others might accept objects directly. Still others might not want to expose such
information to outside control.

Member Summary

Fields
protected int begin205

Starting index (’begin’ attribute)
protected boolean beginSpecified205

Boolean flag indicating whether ’begin’ was specified.
protected int end205

Ending index of the iteration (’end’ attribute).
protected boolean endSpecified205

Boolean flag indicating whether ’end’ was specified.

204

protected
java.lang.String

itemId205
Attribute-exposing control

protected
java.lang.String

statusId205
Attribute-exposing control

protected int step205
Iteration step (’step’ attribute)

protected boolean stepSpecified205
Boolean flag indicating whether ’step’ was specified.

Constructors
LoopTagSupport()206

Constructs a new LoopTagSupport.

Methods
 int doAfterBody()206

Continues the iteration when appropriate —- that is, if we (a) have more items and (b)
don’t run over our ’end’ (given our ’step’).

 void doCatch(java.lang.Throwable t)206
Rethrows the given Throwable.

 void doFinally()206
Removes any attributes that this LoopTagSupport set.

 int doStartTag()206
Begins iterating by processing the first item.

 java.lang.Object getCurrent()206
 LoopTagStatus getLoopStatus()207

protected abstract
boolean

hasNext()207
Returns information concerning the availability of more items over which to iterate.

protected abstract
java.lang.Object

next()207
Returns the next object over which the tag should iterate.

protected abstract
void

prepare()208
Prepares for a single tag invocation.

 void release()208
Releases any resources this LoopTagSupport may have (or inherit).

 void setVar(java.lang.String id)208
Sets the ’var’ attribute.

 void setVarStatus(java.lang.String statusId)208
Sets the ’varStatus’ attribute.

protected void validateBegin()208
Ensures the “begin” property is sensible, throwing an exception expected to propagate
up if it isn’t

protected void validateEnd()208
Ensures the “end” property is sensible, throwing an exception expected to propagate
up if it isn’t

protected void validateStep()209
Ensures the “step” property is sensible, throwing an exception expected to propagate
up if it isn’t

Inherited Member Summary

Methods inherited from class Object

Member Summary

205

Fields

begin

protected int begin

Starting index (’begin’ attribute)

beginSpecified

protected boolean beginSpecified

Boolean flag indicating whether ’begin’ was specified.

end

protected int end

Ending index of the iteration (’end’ attribute). A value of -1 internally indicates ’no end specified’, although
accessors for the core JSTL tags do not allow this value to be supplied directly by the user.

endSpecified

protected boolean endSpecified

Boolean flag indicating whether ’end’ was specified.

itemId

protected java.lang.String itemId

Attribute-exposing control

statusId

protected java.lang.String statusId

Attribute-exposing control

step

protected int step

Iteration step (’step’ attribute)

stepSpecified

protected boolean stepSpecified

Boolean flag indicating whether ’step’ was specified.

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Inherited Member Summary

206

Constructors

LoopTagSupport()

public LoopTagSupport()

Constructs a new LoopTagSupport. As with TagSupport, subclasses should not implement constructors
with arguments, and no-arguments constructors implemented by subclasses must call the superclass
constructor.

Methods

doAfterBody()

public int doAfterBody()

throws JspException

Continues the iteration when appropriate —- that is, if we (a) have more items and (b) don’t run over our
’end’ (given our ’step’).

Throws:
JspException

doCatch(Throwable)

public void doCatch(java.lang.Throwable t)

throws Throwable

Rethrows the given Throwable.

Throws:
java.lang.Throwable

doFinally()

public void doFinally()

Removes any attributes that this LoopTagSupport set.

These attributes are intended to support scripting variables with NESTED scope, so we don’t want to
pollute attribute space by leaving them lying around.

doStartTag()

public int doStartTag()

throws JspException

Begins iterating by processing the first item.

Throws:
JspException

getCurrent()

public java.lang.Object getCurrent()

207

Description copied from interface: javax.servlet.jsp.jstl.core.LoopTag199

Retrieves the current item in the iteration. Behaves idempotently; calling getCurrent() repeatedly should
return the same Object until the iteration is advanced. (Specifically, calling getCurrent() does not advance
the iteration.)

Specified By: getCurrent199 in interface LoopTag199

Returns: the current item as an object

getLoopStatus()

public javax.servlet.jsp.jstl.core.LoopTagStatus200 getLoopStatus()

Description copied from interface: javax.servlet.jsp.jstl.core.LoopTag199

Retrieves a ’status’ object to provide information about the current round of the iteration.

Specified By: getLoopStatus199 in interface LoopTag199

Returns: The LoopTagStatus for the current LoopTag.

hasNext()

protected abstract boolean hasNext()

throws JspTagException

Returns information concerning the availability of more items over which to iterate. This method must be
provided by concrete subclasses of LoopTagSupport to assist the iterative logic provided by the supporting
base class.

See next for more information about the purpose and expectations behind this tag.

Returns: true if there is at least one more item to iterate over, false otherwise

Throws:
JspTagException

See Also: next()207

next()

protected abstract java.lang.Object next()

throws JspTagException

Returns the next object over which the tag should iterate. This method must be provided by concrete
subclasses of LoopTagSupport to inform the base logic about what objects it should iterate over.

It is expected that this method will generally be backed by an Iterator, but this will not always be the case.
In particular, if retrieving the next object raises the possibility of an exception being thrown, this method
allows that exception to propagate back to the JSP container as a JspTagException; a standalone Iterator
would not be able to do this. (This explains why LoopTagSupport does not simply call for an Iterator from
its subtags.)

Returns: the java.lang.Object to use in the next round of iteration

Throws:
java.util.NoSuchElementException - if next() is called but no new elements are available

javax.servlet.jsp.JspTagException - for other, unexpected exceptions

208

JspTagException

prepare()

protected abstract void prepare()

throws JspTagException

Prepares for a single tag invocation. Specifically, allows subclasses to prepare for calls to hasNext() and
next(). Subclasses can assume that prepare() will be called once for each invocation of doStartTag() in the
superclass.

Throws:
JspTagException

release()

public void release()

Releases any resources this LoopTagSupport may have (or inherit).

setVar(String)

public void setVar(java.lang.String id)

Sets the ’var’ attribute.

Parameters:
id - Name of the exported scoped variable storing the current item of the iteration.

setVarStatus(String)

public void setVarStatus(java.lang.String statusId)

Sets the ’varStatus’ attribute.

Parameters:
statusId - Name of the exported scoped variable storing the status of the iteration.

validateBegin()

protected void validateBegin()

throws JspTagException

Ensures the “begin” property is sensible, throwing an exception expected to propagate up if it isn’t

Throws:
JspTagException

validateEnd()

protected void validateEnd()

throws JspTagException

Ensures the “end” property is sensible, throwing an exception expected to propagate up if it isn’t

Throws:
JspTagException

209

validateStep()

protected void validateStep()

throws JspTagException

Ensures the “step” property is sensible, throwing an exception expected to propagate up if it isn’t

Throws:
JspTagException

210

211

Package

javax.servlet.jsp.jstl.fmt

Class Summary

Classes

LocaleSupport212 Class which exposes the locale-determination logic for resource bundles through
convenience methods.

LocalizationContext215 Class representing an I18N localization context.

212

javax.servlet.jsp.jstl.fmt

LocaleSupport
Declaration
public class LocaleSupport

java.lang.Object
|
+--javax.servlet.jsp.jstl.fmt.LocaleSupport

Description
Class which exposes the locale-determination logic for resource bundles through convenience methods.

This class may be useful to any tag handler implementation that needs to produce localized messages. For
example, this might be useful for exception messages that are intended directly for user consumption on an error
page.

Member Summary

Constructors
LocaleSupport()213

Methods
static

java.lang.String
getLocalizedMessage(PageContext pageContext, java.lang.String
key)213

Retrieves the localized message corresponding to the given key.
static

java.lang.String
getLocalizedMessage(PageContext pageContext, java.lang.String
key, java.lang.Object args)213

Retrieves the localized message corresponding to the given key, and performs
parametric replacement using the arguments specified via args.

static
java.lang.String

getLocalizedMessage(PageContext pageContext, java.lang.String
key, java.lang.Object args, java.lang.String basename)213

Retrieves the localized message corresponding to the given key, and performs
parametric replacement using the arguments specified via args.

static
java.lang.String

getLocalizedMessage(PageContext pageContext, java.lang.String
key, java.lang.String basename)214

Retrieves the localized message corresponding to the given key.

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

213

Constructors

LocaleSupport()

public LocaleSupport()

Methods

getLocalizedMessage(PageContext, String)

public static java.lang.String getLocalizedMessage(PageContext pageContext,

java.lang.String key)

Retrieves the localized message corresponding to the given key.

The given key is looked up in the resource bundle of the default I18N localization context, which is
retrieved from the javax.servlet.jsp.jstl.fmt.localizationContext configuration
setting.

If the configuration setting is empty, or the default I18N localization context does not contain any resource
bundle, or the given key is undefined in its resource bundle, the string “???<key>???” is returned, where
“<key>” is replaced with the given key.

Parameters:
pageContext - the page in which to get the localized message corresponding to the given key

key - the message key

Returns: the localized message corresponding to the given key

getLocalizedMessage(PageContext, String, Object[])

public static java.lang.String getLocalizedMessage(PageContext pageContext,

java.lang.String key, java.lang.Object[] args)

Retrieves the localized message corresponding to the given key, and performs parametric replacement using
the arguments specified via args.

See the specification of the <fmt:message> action for a description of how parametric replacement is
implemented.

The localized message is retrieved as in getLocalizedMessage(pageContext, key).

Parameters:
pageContext - the page in which to get the localized message corresponding to the given key

key - the message key

args - the arguments for parametric replacement

Returns: the localized message corresponding to the given key

getLocalizedMessage(PageContext, String, Object[], String)

public static java.lang.String getLocalizedMessage(PageContext pageContext,

java.lang.String key, java.lang.Object[] args, java.lang.String basename)

214

Retrieves the localized message corresponding to the given key, and performs parametric replacement using
the arguments specified via args.

See the specification of the <fmt:message> action for a description of how parametric replacement is
implemented.

The localized message is retrieved as in getLocalizedMessage(pageContext, key,
basename).

Parameters:
pageContext - the page in which to get the localized message corresponding to the given key

key - the message key

args - the arguments for parametric replacement

basename - the resource bundle base name

Returns: the localized message corresponding to the given key

getLocalizedMessage(PageContext, String, String)

public static java.lang.String getLocalizedMessage(PageContext pageContext,

java.lang.String key, java.lang.String basename)

Retrieves the localized message corresponding to the given key.

The given key is looked up in the resource bundle with the given base name.

If no resource bundle with the given base name exists, or the given key is undefined in the resource bundle,
the string “???<key>???” is returned, where “<key>” is replaced with the given key.

Parameters:
pageContext - the page in which to get the localized message corresponding to the given key

key - the message key

basename - the resource bundle base name

Returns: the localized message corresponding to the given key

215

javax.servlet.jsp.jstl.fmt

LocalizationContext
Declaration
public class LocalizationContext

java.lang.Object
|
+--javax.servlet.jsp.jstl.fmt.LocalizationContext

Description
Class representing an I18N localization context.

An I18N localization context has two components: a resource bundle and the locale that led to the resource
bundle match.

The resource bundle component is used by <fmt:message> for mapping message keys to localized messages,
and the locale component is used by the <fmt:message>, <fmt:formatNumber>, <fmt:parseNumber>,
<fmt:formatDate>, and <fmt:parseDate> actions as their formatting or parsing locale, respectively.

Member Summary

Constructors
LocalizationContext()216

Constructs an empty I18N localization context.
LocalizationContext(java.util.ResourceBundle bundle)216

Constructs an I18N localization context from the given resource bundle.
LocalizationContext(java.util.ResourceBundle bundle,
java.util.Locale locale)216

Constructs an I18N localization context from the given resource bundle and locale.

Methods
 java.util.Locale getLocale()216

Gets the locale of this I18N localization context.

java.util.ResourceBund
le

getResourceBundle()216
Gets the resource bundle of this I18N localization context.

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

216

Constructors

LocalizationContext()

public LocalizationContext()

Constructs an empty I18N localization context.

LocalizationContext(ResourceBundle)

public LocalizationContext(java.util.ResourceBundle bundle)

Constructs an I18N localization context from the given resource bundle.

The localization context’s locale is taken from the given resource bundle.

Parameters:
bundle - The resource bundle

LocalizationContext(ResourceBundle, Locale)

public LocalizationContext(java.util.ResourceBundle bundle, java.util.Locale locale)

Constructs an I18N localization context from the given resource bundle and locale.

The specified locale is the application- or browser-based preferred locale that led to the resource bundle
match.

Parameters:
bundle - The localization context’s resource bundle

locale - The localization context’s locale

Methods

getLocale()

public java.util.Locale getLocale()

Gets the locale of this I18N localization context.

Returns: The locale of this I18N localization context, or null if this I18N localization context is empty, or
its resource bundle is a (locale-less) root resource bundle.

getResourceBundle()

public java.util.ResourceBundle getResourceBundle()

Gets the resource bundle of this I18N localization context.

Returns: The resource bundle of this I18N localization context, or null if this I18N localization context is
empty

217

Package

javax.servlet.jsp.jstl.sql

Class Summary

Interfaces

Result218 This interface represents the result of a <sql:query> action.

SQLExecutionTag222 This interface allows tag handlers implementing it to receive values for parameter
markers in their SQL statements.

Classes

ResultSupport220 Supports the creation of a javax.servlet.jsp.jstl.sql.Result object from a source
java.sql.ResultSet object.

218

javax.servlet.jsp.jstl.sql

Result
Declaration
public interface Result

Description
This interface represents the result of a <sql:query> action. It provides access to the following information in
the query result:

• The result rows (getRows() and getRowsByIndex())

• The column names (getColumnNames())

• The number of rows in the result (getRowCount())

• An indication whether the rows returned represent the complete result or just a subset that is limited by a
maximum row setting (isLimitedByMaxRows())

An implementation of the Result interface provides a disconnected view into the result of a query.

Methods

getColumnNames()

public java.lang.String[] getColumnNames()

Returns the names of the columns in the result. The order of the names in the array matches the order in
which columns are returned in method getRowsByIndex().

Returns: the column names as an array of String objects

getRowCount()

public int getRowCount()

Returns the number of rows in the cached ResultSet

Member Summary

Methods
 java.lang.String getColumnNames()218

Returns the names of the columns in the result.
 int getRowCount()218

Returns the number of rows in the cached ResultSet
 java.util.SortedMap getRows()219

Returns the result of the query as an array of SortedMap objects.
 java.lang.Object getRowsByIndex()219

Returns the result of the query as an array of arrays.
 boolean isLimitedByMaxRows()219

Returns true if the query was limited by a maximum row setting

219

Returns: the number of rows in the result

getRows()

public java.util.SortedMap[] getRows()

Returns the result of the query as an array of SortedMap objects. Each item of the array represents a
specific row in the query result.

A row is structured as a SortedMap object where the key is the column name, and where the value is the
value associated with the column identified by the key. The column value is an Object of the Java type
corresponding to the mapping between column types and Java types defined by the JDBC specification
when the ResultSet.getObject() method is used.

The SortedMap must use the Comparator java.util.String.CASE_INSENSITIVE_ORDER.
This makes it possible to access the key as a case insensitive representation of a column name. This method
will therefore work regardless of the case of the column name returned by the database.

Returns: The result rows as an array of SortedMap objects

getRowsByIndex()

public java.lang.Object[][] getRowsByIndex()

Returns the result of the query as an array of arrays. The first array dimension represents a specific row in
the query result. The array elements for each row are Object instances of the Java type corresponding to the
mapping between column types and Java types defined by the JDBC specification when the
ResultSet.getObject() method is used.

Returns: the result rows as an array of Object[] objects

isLimitedByMaxRows()

public boolean isLimitedByMaxRows()

Returns true if the query was limited by a maximum row setting

Returns: true if the query was limited by a maximum row setting

220

javax.servlet.jsp.jstl.sql

ResultSupport
Declaration
public class ResultSupport

java.lang.Object
|
+--javax.servlet.jsp.jstl.sql.ResultSupport

Description
Supports the creation of a javax.servlet.jsp.jstl.sql.Result object from a source java.sql.ResultSet object. A
Result object makes it much easier for page authors to access and manipulate the data resulting from a SQL
query.

Constructors

ResultSupport()

public ResultSupport()

Member Summary

Constructors
ResultSupport()220

Methods
static Result toResult(java.sql.ResultSet rs)221

Converts a ResultSet object to a Result object.
static Result toResult(java.sql.ResultSet rs, int maxRows)221

Converts maxRows of a ResultSet object to a Result object.

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

221

Methods

toResult(ResultSet)

public static javax.servlet.jsp.jstl.sql.Result218 toResult(java.sql.ResultSet rs)

Converts a ResultSet object to a Result object.

Parameters:
rs - the ResultSet object

Returns: The Result object created from the ResultSet

toResult(ResultSet, int)

public static javax.servlet.jsp.jstl.sql.Result218 toResult(java.sql.ResultSet rs,

int maxRows)

Converts maxRows of a ResultSet object to a Result object.

Parameters:
rs - the ResultSet object

maxRows - the maximum number of rows to be cached into the Result object.

Returns: The Result object created from the ResultSet, limited by maxRows

222

javax.servlet.jsp.jstl.sql

SQLExecutionTag
Declaration
public interface SQLExecutionTag

Description
This interface allows tag handlers implementing it to receive values for parameter markers in their SQL
statements.

This interface is implemented by both <sql:query> and <sql:update>. Its addSQLParameter() method is
called by nested parameter actions (such as <sql:param>) to substitute PreparedStatement parameter
values for “?” parameter markers in the SQL statement of the enclosing SQLExecutionTag action.

The given parameter values are converted to their corresponding SQL type (following the rules in the JDBC
specification) before they are sent to the database.

Keeping track of the index of the parameter values being added is the responsibility of the tag handler
implementing this interface

The SQLExcecutionTag interface is exposed in order to support custom parameter actions which may
retrieve their parameters from any source and process them before substituting them for a parameter marker in
the SQL statement of the enclosing SQLExecutionTag action

Methods

addSQLParameter(Object)

public void addSQLParameter(java.lang.Object value)

Adds a PreparedStatement parameter value. Must behave as if it calls
PreparedStatement.setObject(int, Object). For each tag invocation, the integral index
passed logically to setObject() must begin with 1 and must be incremented by 1 for each subsequent
invocation of addSQLParameter(). The Object logically passed to setObject() must be the
unmodified object received in the value argument.

Parameters:
value - the PreparedStatement parameter value

Member Summary

Methods
 void addSQLParameter(java.lang.Object value)222

Adds a PreparedStatement parameter value.

223

Package

javax.servlet.jsp.jstl.tlv

Class Summary

Classes

PermittedTaglibsTLV224 A TagLibraryValidator class to allow a TLD to restrict what taglibs (in addition to
itself) may be imported on a page where it’s used.

ScriptFreeTLV226 A TagLibraryValidator for enforcing restrictions against the use of JSP scripting
elements.

224

javax.servlet.jsp.jstl.tlv

PermittedTaglibsTLV
Declaration
public class PermittedTaglibsTLV extends TagLibraryValidator

java.lang.Object
|
+--TagLibraryValidator

|
+--javax.servlet.jsp.jstl.tlv.PermittedTaglibsTLV

Description
A TagLibraryValidator class to allow a TLD to restrict what taglibs (in addition to itself) may be imported on a
page where it’s used.

This TLV supports the following initialization parameter:

• permittedTaglibs: A whitespace-separated list of URIs corresponding to tag libraries permitted to be
imported on the page in addition to the tag library that references PermittedTaglibsTLV (which is allowed
implicitly).

Constructors

PermittedTaglibsTLV()

public PermittedTaglibsTLV()

Member Summary

Constructors
PermittedTaglibsTLV()224

Methods
 void release()225

 ValidationMessage[] validate(java.lang.String prefix, java.lang.String uri,
PageData page)225

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

225

Methods

release()

public void release()

validate(String, String, PageData)

public ValidationMessage[] validate(java.lang.String prefix, java.lang.String uri,

PageData page)

226

javax.servlet.jsp.jstl.tlv

ScriptFreeTLV
Declaration
public class ScriptFreeTLV extends TagLibraryValidator

java.lang.Object
|
+--TagLibraryValidator

|
+--javax.servlet.jsp.jstl.tlv.ScriptFreeTLV

Description
A TagLibraryValidator for enforcing restrictions against the use of JSP scripting elements.

This TLV supports four initialization parameters, for controlling which of the four types of scripting elements
are allowed or prohibited:

• allowDeclarations: if true, indicates that declaration elements are not prohibited.

• allowScriptlets: if true, indicates that scriptlets are not prohibited

• allowExpressions: if true, indicates that top-level expression elements (i.e., expressions not associated with
request-time attribute values) are not prohibited.

• allowRTExpressions: if true, indicates that expression elements associated with request-time attribute
values are not prohibited.

The default value for all for initialization parameters is false, indicating all forms of scripting elements are to be
prohibited.

Member Summary

Constructors
ScriptFreeTLV()227

Constructs a new validator instance.

Methods
 void setInitParameters(java.util.Map initParms)227

Sets the values of the initialization parameters, as supplied in the TLD.
 ValidationMessage[] validate(java.lang.String prefix, java.lang.String uri,

PageData page)227
Validates a single JSP page.

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

227

Constructors

ScriptFreeTLV()

public ScriptFreeTLV()

Constructs a new validator instance. Initializes the parser factory to create non-validating, namespace-aware
SAX parsers.

Methods

setInitParameters(Map)

public void setInitParameters(java.util.Map initParms)

Sets the values of the initialization parameters, as supplied in the TLD.

Parameters:
initParms - a mapping from the names of the initialization parameters to their values, as specified in
the TLD.

validate(String, String, PageData)

public ValidationMessage[] validate(java.lang.String prefix, java.lang.String uri,

PageData page)

Validates a single JSP page.

Parameters:
prefix - the namespace prefix specified by the page for the custom tag library being validated.

uri - the URI specified by the page for the TLD of the custom tag library being validated.

page - a wrapper around the XML representation of the page being validated.

Returns: null, if the page is valid; otherwise, a ValidationMessage[] containing one or more messages
indicating why the page is not valid.

228

229

APPENDIX A

Compatibility & Migration

This appendix provides information on compatibility between different versions of
JSTL, as well as on how to migrate your web application to take advantage of the
new features of the latest JSTL release.

A.1 JSTL 1.1 Backwards Compatibility
JSTL 1.1 is backwards compatible with JSTL 1.0. This means that a web-application
that was developed to run with JSTL 1.0 won’t require any modification when run
with JSTL 1.1. Details explaining how this backwards compatibility is achieved are
given in Section A.1.1 below.

If your application executes in an environment that has JSTL 1.1, it is however
recommended that you migrate to JSTL 1.1 to take full advantage of the new
capabilities it offers. Details on how to migrate your web-application from JSTL 1.0
to JSTL 1.1 are given in Section A.2.

A.1.1 How JSTL 1.1 Backwards Compatibility is
Achieved
JSTL 1.0 requires JSP 1.2 (J2EE 1.3 platform). The key difference between JSTL 1.0
and JSTL 1.1 is that the expression language (EL) has moved from the JSTL
specification to the JSP specification. The EL is therefore now part of the JSP 2.0
specification, and JSTL 1.1 requires JSP 2.0 (J2EE 1.4 platform).

A web application developed for JSP 1.2 has a servlet 2.3 deployment descriptor
(web.xml). JSP 2.0 provides backwards compatibility for JSP 1.2 web applications by
disabling by default the EL machinery (i.e. evaluation of EL expressions) when a
web application has a servlet 2.3 deployment descriptor. A web application that uses

230 JSTL 1.1 • November 2003

JSTL 1.0 and which is deployed with a servlet 2.3 deployment descriptor therefore
runs without any modification in a J2EE 1.4 environment because EL expressions are
ignored by JSP 2.0, and JSTL 1.0 keeps evaluating them as was the case with JSP 1.2.

To support backwards compatibility, JSTL 1.1 introduces new URIs that must be
specified to use the new capabilities offered in JSTL 1.1. Among these new
capabilities is the evaluation of EL expressions being performed by the JSP 2.0
container rather than JSTL itself. The new URIs for JSTL 1.1 are as follows:

JSTL 1.1 Tag Libraries

The new URIs are similar to the old JSTL 1.0 EL URIs, except that jsp/ has been
added in front of jstl, stressing JSTL's dependency on the JSP specification (which
now "owns" the EL). It would have been desirable to move forward with the same
EL URIs in JSTL 1.1, however this would have only been possible at the cost of
losing full backwards compatibility. The JSTL Expert Group felt that maintaining
backwards compatibility was more important than preserving the old URIs.

The JSTL 1.0 URIs are deprecated as of JSTL 1.1. If used, they should normally
appear in a web application that has a servlet 2.3 deployment descriptor to disable
the JSP 2.0 EL machinery. If used with a servlet 2.4 deployment descriptor, the JSP
2.0 EL machinery must be explicitely disabled for the pages where the JSTL 1.0 tag
libraries are used. Consult the JSP specification for details.

A.2 Migrating to JSTL 1.1
To migrate from JSTL 1.0 to JSTL 1.1, so a web application can take advantage of the
new features associated with JSTL 1.1, one must do the following:

■ Migrate the web application deployment descriptor (web.xml) from servlet 2.3 to
servlet 2.4.
■ See Servlet 2.4 specification for details

■ Replace all the JSTL 1.0 EL & RT URIs by the new JSTL 1.1 URIs
■ Escape all occurrences of “${“ in RT actions and template text.

■ See JSP 2.0 specification for details.

Functional Area URI Prefix

core http://java.sun.com/jsp/jstl/core c

XML processing http://java.sun.com/jsp/jstl/xml x

I18N capable formatting http://java.sun.com/jsp/jstl/fmt fmt

relational db access (SQL) http://java.sun.com/jsp/jstl/sql sql

231

APPENDIX B

Changes

This appendix lists the changes in the JSTL specification. This appendix is non-
normative.

B.1 JSTL 1.1 Maintenance Release
As already stated in the JSTL 1.0 specification, the specification of the Expression
Language (EL) first introduced in JSTL 1.0 is now moving into the JSP 2.0
specification. The primary goal of the JSTL 1.1 maintenance release is to synchronize
the JSTL specification with the JSP 2.0 specification which now owns the EL. This
maintenance release also adresses clarifications and corrections needed to the initial
specification.

Expression Language moved to the JSP specification

■ Necessary changes have been made all across the specification to reflect the fact
that the Expression Language now belongs to the JSP specification (JSP 2.0). This
includes having appendix A removed ("Appendix A - Expression Language
Definition"), as well as having examples modified to take advantage of the fact
that EL expressions can now be used in template text and do not require the use
of the <c:out> action (unless the escapeXml or default features of <c:out> are
required).

Compatibility and Migration

■ New Appendix A provides information on compatibility between different
versions of JSTL, as well as on how to migrate a web application to take
advantage of the new features of the latest JSTL release.

Functions

232 JSTL 1.1 • November 2003

■ Since JSP 2.0 introduces EL functions, JSTL 1.1 defines a simple, standard set of
functions that has been most often requested by page authors. This includes
functions to get the size of a collection, as well as to perform common string
manipulations. Functions are defined in the new Chapter 15.

Support for direct transfer from Reader -> out

■ With JSP 2.0, displaying the content of a Reader object to "out" has been identified
as an important use case, creating the need for a mechanism to handle a direct
transfer from reader -> out. This is now provided as an extension of <c:out>.

Default values

■ New section 2.9 has been added to describe how default values can be handled in
a generic way in JSTL.

end attribute < begin attribute in iterator actions

■ The spec used to constrain the end attribute to be greater than or equal to the
begin attribute. It has now been relaxed to handle this situation according to
common practices of modern programming languages (e.g. C++, Java, Perl). If
end < begin, the loop will simply not be executed.

Character encoding support in <c:import>

■ The way character encoding is handled for <c:import> has been corrected in
Section 7.4.

Semantics of locales

■ Clarified the fact that the semantics of locales in JSTL are the same as the ones
defined by the class java.util.Locale (section 8.1). A consequence of this is
that, as of J2SE 1.4, new language codes defined in ISO 639 (e.g. he, yi, id) will
be returned as the old codes (e.g. iw, ji, in).

Correct the inconsistency between <fmt:message> and <fmt:formatXXX> when
<fmt:message> is used with parametric replacement and a locale-less localization
context

■ If the localization context does not have any locale, the locale of the
java.text.MessageFormat is set to the locale returned by the formatting locale
lookup algorithm in section 9.3, except that the available formatting locales are
given as the intersection of the number- and date- formatting locales. If this
algorithm does not yield any locale, the locale of the java.text.MessageFormat is
set to the runtime's default locale.

Null or empty values with formatting actions

■ The behavior of <fmt:formatNumber> and <fmt:formatDate> (sections 9.7 and
9.9) has been clarified when value is null or empty.

Connection handling in SQL actions

Appendix B Changes 233

■ Clarifications have been made to the fact that SQL actions in JSTL always release
connections to the database as quickly as possible (a connection is always closed
by the time execution of the action responsible for opening it completes).

Context for XPath expression evaluations nested within <x:forEach>

■ A new description subsection has been added to Section 12.6 to clarify how the
context for XPath expression evaluations is obtained within <x:forEach>.

Align behavior of <x:forEach> with <c:forEach>

■ Attributes varStatus, begin, end, and step have been added.

Default context node for XPath expression evaluations

■ New section "11.1.6 Default Context Node" clarifies how the default context node
for XPath expression evaluations is obtained.

Replace attributes that start with "xml"

■ Names beginning with the string "xml" are reserved by the XML specification.
New attribute doc has been added to <x:parse> to replace attribute xml that is
now being deprecated. Also, new attributes doc and docSystemId have been
added to <x:transform> to replace attributes xml and xmlSystemId that are now
being deprecated.

Response Encoding

■ The way formatting actions influence the encoding of the response has been
clarified in sections 8.4 and 8.10. Repeated calls to
ServletResponse.setLocale() will affect the character encoding of the
response only if it has not already been set explicitely.

Java APIs

■ The specification of the JSTL Java APIs is now generated directly from the
Javadoc of the reference implementation and is consolidated within its own
chapter (Chapter 16).

Minor corrections

■ status has been corrected with varStatus in section 6.6.

■ The resulting locale of examples 1 and 3 in Section 8.3.3 have been corrected.

■ The syntax of <sql:dateParam> in Section 10.8 has been corrected.

234 JSTL 1.1 • November 2003

B.2 Changes between Proposed Final Draft
and Final Draft
Many typos and clarifications have been made to the specification. Clarifications and
modifications worth noting include:

Preface

■ Added typographical conventions.

Chapter 2 - Conventions

■ When an action is required to throw an exception, there were two choices when
no root cause was involved: JspException or JspTagException. The
specification has now standardized on JspException everywhere in the spec
(instead of JspException in some places (with root cause), and
JspTagException in some others (no root cause)).

■ Clarified the proper handling of constraints in section 2.7.

■ Constants names now use “_” as word separators (e.g.
FMT_FALLBACK_LOCALE)

Chapter 3 - Expression Language Overview

■ Fixed example featuring the default attribute in section 3.6.

Chapter 4 - General-Purpose Actions

■ Transparent conversion now supported on a value to be set as a bean property.

■ Clarified behavior of <c:set> when value is null, so it has the same semantics as
<c:remove>.

■ Clarified the behavior of <c:out> when value is null.

Chapter 6 - Iterator Actions

■ Corrected the name of method setStatus() to be setVarStatus(), as it
should have been.

■ Methods next(), hasNext(), prepare() of class LoopTagSupport are
abstract methods.

■ Method hasNext()of class LoopTagSupport returns boolean.

■ Added protected fields beginSpecified, endSpecified, and stepSpecified
to class LoopTagSupport.

Chapter 8 - I18N Actions

■ Left over references to javax.servlet.jsp.jstl.fmt.bundle have been
changed to javax.servlet.jsp.jstl.fmt.localizationContext.

Appendix B Changes 235

■ Added the three constructors to class LocalizationContext and clarified the
behavior of methods getResourceBundle() and getLocale().

Chapter 9 - Formatting Actions

■ Clarified how the formatting pattern applies in <fmt:number> and
<fmt:parseNumber>.

Chapter 10 - SQL Actions

■ Clarified the handling of auto-commit mode and isolation level in
<sql:transaction>.

■ Clarified the handling of exceptions occurring during the execution of
<sql:transaction>.

■ Added clarification to <sql:param> when dealing with String values (only
works for columns of text type).

■ Clarified that if dataSource is null, a JspException is thrown for <sql:query>,
<sql:update>, <sql:transaction>, and <sql:setDataSource>.

Chapters 11, 12, 13 - XML Actions

■ Clarified “Null & Error Handling” for <x:parse> and <x:transform>

■ In <x:forEach>, if select is empty, a JspException is now thrown.

■ Added syntax without body content to <x:if>. It is now similar to <c:if>.

■ Only String and Reader objects are now allowed for the xml attribute of
<x:parse>.

■ Clarified that DOM objects are supported as XPath variables.

Appendix A - Expression Language

■ Alternative operators &&, ||, and ! were missing in some of the tables. They now
appear along with their counterpart and, or, and not.

■ Clarified the definition of integer and floating point literals.

■ Removed division by 0 as an example of exception for arithmetic operators / and
%.

B.3 Changes between Public Draft and
Proposed Final Draft
Many typos and clarifications have been made to the specification. Major changes
include:

236 JSTL 1.1 • November 2003

Preface

■ Added acknowledgements.

Chapter 1 - Introduction

■ Clarified the fact that actions from EL- and RT- based libraries can be mixed
together.

Chapter 2 - Conventions

■ Clarified how actions throw exceptions.

■ “Section 2.8 - Configuration Parameters” has been completely rewritten and is
now titled “Configuration Data”. The way configuration data is handled in JSTL
has been clarified and will now work properly with containers that implement
JSP scopes via a single namespace.

Chapter 4 - Expression Language Support Actions

■ Renamed the chapter to “General Purpose Actions”.

■ Removed the restriction that the actions in this chapter are only available in the
EL-based version of the library.

■ Extended the scope of <c:set> so it supports setting a property of a target
JavaBeans or java.util.Map object.

Chapter 7 - URL Related Actions

■ Improved the error handling behavior of <c:import>

■ <c:url> and <c:redirect> now append the context path to any relative URL that
starts with "/". Added new attribute context to properly handle foreign context
URLs.

Chapter 8 - I18N Actions

■ In the resource bundle lookup, the locale-less root resource bundle is now
supported if neither the preferred locales nor the fallback locale yield a resource
bundle match.

■ <fmt:locale> has been renamed to <fmt:setLocale>.

■ <fmt:bundle> no longer takes 'var' and 'scope'. Creating and storing an I18N
localization context with a resource bundle in a 'var' or scoped configuration
variable is now done by the new <fmt:setBundle>.

■ Logging is considered an implementation-specific (deployment) issue and has
been removed from <fmt:message>'s description.

■ A new class LocalizationContext has been defined which represents an I18N
localization context containg a java.util.ResourceBundle and a
java.util.Locale.

■ javax.servlet.jsp.jstl.fmt.basename has been replaced with
javax.servlet.jsp.jstl.fmt.localizationContext.

Appendix B Changes 237

Chapter 9 - Formatting Actions

■ Formatting actions nested inside a <fmt:bundle> no longer use that bundle's
locale as their formatting locale, but the locale of the enclosing I18N localization
context, which is the (possibly more specific) locale that led to the resource
bundle match.

■ <fmt:timeZone> no longer takes 'var' and 'scope'. Storing a time zone in a 'var' or
scoped configuration variable is now done by the new <fmt:setTimeZone>.

■ <fmt:formatNumber> no longer uses the "en" locale to parse numeric values
given as strings, but uses Long.valueOf() or Double.valueOf() instead.

■ In <fmt:parseNumber>, parseLocale, which used to support string values only,
now also supports values of type java.util.Locale.

■ <fmt:formatDate> no longer supports literal values, and no longer has a body. Its
'value' attribute is no longer optional, meaning the default behaviour of
formatting the current time and date is no longer supported.

■ In <fmt:parseDate>, parseLocale, which used to support string values only,
now also supports values of type java.util.Locale.

■ <fmt:setLocale>, formerly known as <fmt:locale>, now also accepts values of type
java.util.Locale (in addition to string values).

■ The runtime's default locale is no longer used as a fallback, since it is not
guaranteed to be among the supported formatting locales.

■ <fmt:timeZone> and the new <fmt:setTimeZone> now also accept values of type
java.util.TimeZone (in addition to string values).

Chapter 10 - SQL Actions

■ The configuration settings now include JDBC parameters.

■ <sql:driver> has been renamed <sql:setDataSource>. It now supports attribute
“password” as well as setting configuration variables.

■ The keys in the Map objects returned by Result.getRows() are now case-
insensitive. The motivation for this change is that some databases return column
names as all-uppercase strings in the ResultSet, while others return them with the
same upper/lowercase mix as was used in the SELECT statement.

■ Method Result.getRowsCount() has been renamed to
Result.getRowCount() to be compatible with naming conventions in J2SE.

■ Method Result.getMetaData() as well as interface ColumnMetaData have
been removed because handling of exceptions encountered when caching
ResultSetMetaData is problematic. New method
Result.getColumnNames() has been added to still provide easy access to
column names.

■ Exception message for <sql:query> and <sql:update> has been improved. It now
includes the SQL statement and provides the caught exception as the root cause.

■ Warning added in <sql:transaction> about the use of commit and rollback.

238 JSTL 1.1 • November 2003

■ JNDI resource path to a data source must now be specified as a relative path, just
as is the case in a J2EE deployment descriptor.

■ New <sql:dateParam> action added to properly support setting the values of
parameter markers for values of type java.util.Date.

■ The algorithm used by the SQL actions (<sql:query>, <sql:update>,
<sql:transaction>) to access a database has been modified to support
configuration settings for a dataSource as well as for the JDBC DriverManager
facility.

Chapters 11, 12, 13 - XML Actions

■ Removed the syntax with body content for <x:set>. This was introducing a
potentially confusing mechanism for entering "dynamic" XPath expressions.

■ URLs specified in <x:parse> and <x:transform> may now be absolute or relative
URLs.

■ Clarified the fact that <x:parse> and <x:transform> do not perform any validation
against DTD's or Schemas.

■ XPath scopes “page”, “request”, “session”, and “application” have been renamed
“pageScope”, “requestScope”, “sessionScope”, and “applicationScope” to be the
same as the names of implicit objects in the expression language.

Appendix A - Expression Language

■ Implicit objects page, request, session, application, have been renamed
pageScope, requestScope, sessionScope, applicationScope.

■ Implicit object params has been renamed paramValues.

■ Added implicit objects header, headerValues, cookie, and initParam.

■ Coercion rules have been improved.

■ New operator “empty” has been added.

■ “eq” and “ne” have been added as alternatives to “==” and “!=”

■ “&&”, “||”, “!” have been added as alternatives to “and”, “or”, and “not”.

	JavaServer Pages™ Standard Tag Library
	Contents
	Preface
	Related Documentation
	Typographical Conventions
	Acknowledgments
	Comments

	Introduction
	1.1 Goals
	1.2 Multiple Tag Libraries
	1.3 Container Requirement

	Conventions
	2.1 How Actions are Documented
	2.1.1 Attributes
	2.1.2 Syntax Notation

	2.2 Scoped Variables
	2.2.1 var and scope
	2.2.2 Visibility

	2.3 Static vs Dynamic Attribute Values
	2.4 White Spaces
	2.5 Body Content
	2.6 Naming
	2.7 Errors and Exceptions
	2.8 Configuration Data
	2.9 Default Values

	Expression Language Overview
	3.1 Expressions and Attribute Values
	3.2 Accessing Application Data
	3.3 Nested Properties and Accessing Collections
	3.4 Operators
	3.5 Automatic Type Conversion
	3.6 Default Values

	General-Purpose Actions
	4.1 Overview
	4.2 <c:out>
	4.3 <c:set>
	4.4 <c:remove>
	4.5 <c:catch>

	Conditional Actions
	5.1 Overview
	5.2 Custom Logic Actions
	5.3 <c:if>
	5.4 <c:choose>
	5.5 <c:when>
	5.6 <c:otherwise>

	Iterator Actions
	6.1 Overview
	6.1.1 Collections of Objects to Iterate Over
	6.1.2 Map
	6.1.3 Iteration Status
	6.1.4 Range Attributes
	6.1.5 Tag Collaboration

	6.2 <c:forEach>
	6.3 <c:forTokens>

	URL Related Actions
	7.1 Hypertext Links
	7.2 Importing Resources
	7.2.1 URL
	7.2.2 Exporting an object: String or Reader
	7.2.3 URL Encoding
	7.2.4 Networking Properties

	7.3 HTTP Redirect
	7.4 <c:import>
	7.5 <c:url>
	7.6 <c:redirect>
	7.7 <c:param>

	Internationalization (i18n) Actions
	8.1 Overview
	8.1.1 <fmt:message>

	8.2 I18n Localization Context
	8.2.1 Preferred Locales

	8.3 Determinining the Resource Bundle for an i18n Localization Context
	8.3.1 Resource Bundle Lookup
	8.3.2 Resource Bundle Determination Algorithm
	8.3.3 Examples

	8.4 Response Encoding
	8.5 <fmt:setLocale>
	8.6 <fmt:bundle>
	8.7 <fmt:setBundle>
	8.8 <fmt:message>
	8.9 <fmt:param>
	8.10 <fmt:requestEncoding>
	8.11 Configuration Settings
	8.11.1 Locale
	8.11.2 Fallback Locale
	8.11.3 I18n Localization Context

	Formatting Actions
	9.1 Overview
	9.1.1 Formatting Numbers, Currencies, and Percentages
	9.1.2 Formatting Dates and Times

	9.2 Formatting Locale
	9.3 Establishing a Formatting Locale
	9.3.1 Locales Available for Formatting Actions
	9.3.2 Locale Lookup
	9.3.3 Formatting Locale Lookup Algorithm

	9.4 Time Zone
	9.5 <fmt:timeZone>
	9.6 <fmt:setTimeZone>
	9.7 <fmt:formatNumber>
	9.8 <fmt:parseNumber>
	9.9 <fmt:formatDate>
	9.10 <fmt:parseDate>
	9.11 Configuration Settings
	9.11.1 TimeZone

	SQL Actions
	10.1 Overview
	10.1.1 Data Source
	10.1.2 Querying a Database
	10.1.3 Updating a Database
	10.1.4 SQL Statement Parameters

	10.2 Database Access
	10.3 <sql:query>
	10.4 <sql:update>
	10.5 <sql:transaction>
	10.6 <sql:setDataSource>
	10.7 <sql:param>
	10.8 <sql:dateParam>
	10.9 Configuration Settings
	10.9.1 DataSource
	10.9.2 MaxRows

	XML Core Actions
	11.1 Overview
	11.1.1 XPath Context
	11.1.2 XPath Variable Bindings
	11.1.3 Java to XPath Type Mappings
	11.1.4 XPath to Java Type Mappings
	11.1.5 The select Attribute
	11.1.6 Default Context Node
	11.1.7 Resources Access
	11.1.8 Core Actions

	11.2 <x:parse>
	11.3 <x:out>
	11.4 <x:set>

	XML Flow Control Actions
	12.1 Overview
	12.2 <x:if>
	12.3 <x:choose>
	12.4 <x:when>
	12.5 <x:otherwise>
	12.6 <x:forEach>

	XML Transform Actions
	13.1 Overview
	13.2 <x:transform>
	13.3 <x:param>

	Tag Library Validators
	14.1 Overview

	Functions
	15.1 Overview
	15.1.1 The length Function
	15.1.2 String Manipulation Functions

	15.2 fn:contains
	15.3 fn:containsIgnoreCase
	15.4 fn:endsWith
	15.5 fn:escapeXml
	15.6 fn:indexOf
	15.7 fn:join
	15.8 fn:length
	15.9 fn:replace
	15.10 fn:split
	15.11 fn:startsWith
	15.12 fn:substring
	15.13 fn:substringAfter
	15.14 fn:substringBefore
	15.15 fn:toLowerCase
	15.16 fn:toUpperCase
	15.17 fn:trim

	Java APIs
	javax.servlet.jsp.jstl.core
	ConditionalTagSupport
	Config
	LoopTag
	LoopTagStatus
	LoopTagSupport

	javax.servlet.jsp.jstl.fmt
	LocaleSupport
	LocalizationContext

	javax.servlet.jsp.jstl.sql
	Result
	ResultSupport
	SQLExecutionTag

	javax.servlet.jsp.jstl.tlv
	PermittedTaglibsTLV
	ScriptFreeTLV

	Compatibility & Migration
	A.1 JSTL 1.1 Backwards Compatibility
	A.1.1 How JSTL 1.1 Backwards Compatibility is Achieved

	A.2 Migrating to JSTL 1.1

	Changes
	B.1 JSTL 1.1 Maintenance Release
	B.2 Changes between Proposed Final Draft and Final Draft
	B.3 Changes between Public Draft and Proposed Final Draft

