QSun

mll:rn-i}l“ 2t

JavaServer Pages™ Standard Tag Library

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

November 2003

Version 1.1

Pierre Delisle, editor

Please send comments to jsr-52-comments@jcp.org

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

JavaServer Pages™ Standard Tag Library (JSTL) Specification ("Specification™)
Version: 1.1

Status: FCS, Maintenance Release

Release: November 24, 2003

Copyright 2003 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right
to sublicense), under the Sun's applicable intellectual property rights to view, download, use and reproduce the Specification only for the
purpose of internal evaluation, which shall be understood to include developing applications intended to run on an implementation of the
Specification provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under
any applicable copyrights or patent rights it may have in the Specification to create and/or distribute an Independent Implementation of the
Specification that: (i) fully implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset, superset
or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within
the Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented; and (iii) passes the
TCK (including satisfying the requirements of the applicable TCK Users Guide) for such Specification. The foregoing license is expressly
conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through" requirements in any license You
grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to implementations
of the Specification (and products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant
or otherwise pass through to your licensees any licenses under Sun's applicable intellectual property rights; nor (b) authorize your licensees
to make any claims concerning their implementation's compliance with the Spec in question.

For the purposes of this Agreement: "Independent Implementation” shall mean an implementation of the Specification that neither derives from
any of Sun's source code or binary code materials nor, except with an appropriate and separate license from Sun, includes any of Sun's source
code or binary code materials; and "Licensor Name Space" shall mean the public class or interface declarations whose names begin with "java",

"Javax", "com.sun” or their equivalents in any subsequent naming convention adopted by Sun through the Java Community Process, or any
recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material provision of or act outside the
scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, the Java Coffee Cup logo, J2EE, and JavaServer Pages are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-

INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR
OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification;
(ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that later versions or
releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Specification and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary
and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related
to the Specification and future versions, implementations, and test suites thereof.

(LFI#136183/Form ID#011801)

Contents

Preface xii

. Introduction 1

1.1 Goals 1
1.2 Multiple Tag Libraries 2

1.3 Container Requirement 2

. Conventions 3

2.1 How Actions are Documented 3
2.1.1 Attributes 4
2.1.2 Syntax Notation 5
2.2 Scoped Variables 5
2.21 varandscope 6
222 Visibility 6
2.3 Static vs Dynamic Attribute Values 7
2.4 White Spaces 7
2.5 Body Content 7
2.6 Naming 8
2.7 Errors and Exceptions 8
2.8 Configuration Data 10
2.9 Default Values 11

\%

3. Expression Language Overview 13

3.1
3.2
3.3
3.4
3.5
3.6

Expressions and Attribute Values 13

Accessing Application Data 14

Nested Properties and Accessing Collections 15

Operators 16
Automatic Type Conversion 16
Default Values 17

4. General-Purpose Actions 19

4.1
4.2
4.3
4.4
4.5

Overview 19
<c.out> 22
<c.set> 24
<c:remove> 26

<c:.catch> 27

5. Conditional Actions 29

5.1
5.2
5.3
5.4
5.5
5.6

Overview 29

Custom Logic Actions 31
<c:if> 32

<c:choose> 33
<c:when> 34

<c:.otherwise> 35

6. lterator Actions 37

6.1

6.2

Overview 37

6.1.1 Collections of Objects to Iterate Over
6.1.2 Map 39

6.1.3 Iteration Status 39

6.1.4 Range Attributes 40

6.1.5 Tag Collaboration 40

<c:forEach> 42

JSTL 1.1 « November 2003

38

6.3 <c:forTokens> 45

. URL Related Actions 47

7.1 Hypertext Links 47
7.2 Importing Resources 48
721 URL 49
7.2.2 Exporting an object: String or Reader 49
7.2.3 URL Encoding 50
7.24 Networking Properties 50
7.3 HTTP Redirect 51
7.4 <cimport> 52
75 <curl> 57
7.6 <credirect> 59

7.7 <ciparam> 61

. Internationalization (i18n) Actions 63

8.1 Overview 64
8.1.1 <fmt:message> 65

8.2 118n Localization Context 65
8.2.1 Preferred Locales 66

8.3 Determinining the Resource Bundle for an i18n Localization Context 68
8.3.1 Resource Bundle Lookup 68
8.3.2 Resource Bundle Determination Algorithm 69
8.3.3 Examples 70

8.4 Response Encoding 72

8.5 <fmtsetLocale> 74

8.6 <fmt:bundle> 76

8.7 <fmtisetBundle> 78

8.8 <fmt:message> 80

8.9 <fmt:param> 83

8.10 <fmt:requestEncoding> 85

Contents vi

8.11 Configuration Settings 87
8.11.1 Locale 87
8.11.2 Fallback Locale 87
8.11.3 118n Localization Context 88

9. Formatting Actions 89

9.1 Overview 89
9.1.1 Formatting Numbers, Currencies, and Percentages 89
9.1.2 Formatting Dates and Times 90

9.2 Formatting Locale 91

9.3 Establishing a Formatting Locale 93
9.3.1 Locales Available for Formatting Actions 93
9.3.2 Locale Lookup 93
9.3.3 Formatting Locale Lookup Algorithm 93

9.4 Time Zone 94

9.5 <fmtitimeZone> 95

9.6 <fmtisetTimeZone> 96

9.7 <fmt:formatNumber> 98

9.8 <fmt:parseNumber> 102

9.9 <fmt:formatDate> 105

9.10 <fmt:parseDate> 108

9.11 Configuration Settings 111
9.11.1 TimeZone 111

10. SQL Actions 113
10.1 Overview 113
10.1.1 Data Source 113
10.1.2 Querying a Database 114
10.1.3 Updating a Database 116
10.1.4 SQL Statement Parameters 116
10.2 Database Access 118

vii JSTL 1.1 « November 2003

10.3 <sgl:query> 119

10.4 <sqglupdate> 122

10.5 <sgl:transaction> 125

10.6 <sql:setDataSource> 128

10.7 <sqgl:param> 130

10.8 <sql:dateParam> 132

10.9 Configuration Settings 134
10.9.1 DataSource 134
10.9.2 MaxRows 134

11. XML Core Actions 135

11.1 Overview 135
11.1.1 XPath Context 135
11.1.2 XPath Variable Bindings 136
11.1.3 Javato XPath Type Mappings 137
11.1.4 XPath to Java Type Mappings 138
11.1.5 The sel ect Attribute 138
11.1.6 Default Context Node 138
11.1.7 Resources Access 139
11.1.8 Core Actions 139

11.2 <x:parse> 141

11.3 <xout> 144

114 <x:set> 146

12. XML Flow Control Actions 147
12.1 Overview 147
122 <xif> 149
12.3 <x:choose> 151
124 <x:when> 152
12.5 <x:otherwise> 153
12.6 <x:forEach> 154

Contents viii

13. XML Transform Actions 157
13.1 Overview 157
13.2 <x:transform> 159

13.3 <x:param> 162

14. Tag Library Validators 163
14.1 Overview 163

15. Functions 167

15.1 Overview 167
15.1.1 Thel engt h Function 167
15.1.2 String Manipulation Functions 168

15.2 fn:contains 171

15.3 fn:containslignoreCase 172

154 fniendsWith 173

155 fn:escapeXml 174

15.6 fniindexOf 175

15.7 fnjoin 176

15.8 fn:ilength 177

15.9 fnireplace 178

15.10 fn:split 179

15.11 fn:startsWith 180

15.12 fn:substring 181

15.13 fn:substringAfter 182

15.14 fn:substringBefore 183

15.15 fn:toLowerCase 184

15.16 fn:toUpperCase 185

15.17 fn:trim 186

16. Java APIs 187

javax.servlet.jsp.jstl.core 189

ix JSTL1.1 » November 2003

ConditionalTagSupport 190
Config 193

LoopTag 199
LoopTagStatus 200
LoopTagSupport 203
javax.servlet.jsp.jstl.fmt 211
LocaleSupport 212
LocalizationContext 215
javax.servlet.jsp.jstl.sql 217
Result 218

ResultSupport 220
SQLExecutionTag 222
javax.servlet.jsp.jstl.tlv 223
PermittedTaglibsTLV 224
ScriptFreeTLV 226

A. Compatibility & Migration 229

B. Changes 231

Contents X

Xi

JSTL 1.1 » November 2003

Preface

This is the JavaServer Pages™ Standard Tag Library 1.1 (JSTL 1.1) specification,
developed by the JSR-52 expert group under the Java Community Process.

See http://www.jcp.org.

Related Documentation

Implementors of JSTL and authors of JSP pages may find the following documents
worth consulting for additional information:.

JavaServer Pages (JSP)

Java Servlet Technology

Java 2 Platform, Standard Edition
Java 2 Platform, Enterprise Edition
JavaBeans

JDBC

Java Technology and XML
XPath specification

XML home page at W3C

HTML home page at W3C
XML.org home page

http://java.sun.com/jsp
http://java.sun.com/servlet
http://java.sun.com/j2se
http://java.sun.com/j2ee
http://java.sun.com/beans
http://java.sun.com/jdbc
http://java.sun.com/xml
http://www.w3.0org/ TR/ xpath
http://www.w3.org/ XML
http://www.w3.org/MarkUp

http://www.xml.org

Xii

Typographical Conventions

Font Style Uses

Italic Emphasis, definition of term.

Syntax, code examples, attribute names, Java language types,

Mbnospace API, enumerated attribute values.

Xiii

Acknowledgments

The JavaServer Pages™ Standard Tag Library (JSTL) specification is the result of
collaborative work involving many individuals, all driven by a common goal of
designing the best libraries possible for the JSP page author community.

We would like to thank all members of the JSR-52 expert group: Nathan Abramson,
Shawn Bayern, Hans Bergsten, Paul Bonfanti, Vince Bonfanti, David Brown, Larry
Cable, Tim Dawson, Morgan Delagrange, Bob Foster, David Geary, Scott Hasse, Hal
Hildebrand, Jason Hunter, Serge Knystautas, Mark Kolb, Wellington Lacerda, Jan
Luehe, Geir Magnusson Jr., Dan Malks, Craig McClanahan, Richard Morgan, Glenn
Nielsen, Rickard Oberg, Joseph B. Ottinger, Eduardo Pelegri-Llopart, Sam Pullara,
Tom Reilly, Brian Robinson, Russ Ryan, Pasi Salminen, Steven Sargent, Allan Scott,
Virgil Sealy, Magnus Stenman, Gael Stevens, James Strachan, Christine Tomlinson,
Norbert von Truchsess, Keyton Weissinger, Clement Wong, Alex Yiu.

This specification was first initiated by Eduardo Pelegri-Llopart. Eduardo’s
leadership in making the Java platform the best technology available for the web
layer has been key in shaping the vision behind the standard tag library.

Shawn Bayern and Hans Bergsten deserve special credit for being actively involved
in all design issues of this specification. Their vast expertise and commitment to
excellence has had a profound impact in every single aspect of this specification.
Mille mercis Shawn et Hans! Don't know how we would have done it without you
two.

Many thanks to Jan Luehe for taking ownership of the internationalization and
formatting chapters of this specification on short notice, and doing an incredible job.

JSTL 1.1 « November 2003

Special mention to Nathan Abramson for being a driving force behind the
expression language introduced in JSTL, to James Strachan for leading the group in
our understanding of XML for page authors, and to Craig McClanahan for his help
on servlet and J2EE platform related issues.

This specification has drawn a lot of its design ideas from pioneers in the field of tag
libraries. We are grateful to the Jakarta project at Apache, as well as other efforts in
the industry, where projects led by Craig McClanahan (Struts), James Strachan
(XTags), Morgan Delagrange (DBTags), Tim Dawson (I118N), Glenn Nielsen (many
utility taglibs), Scott Hasse (JPath), Dmitri Plotnikov (JXPath), Pasi Salminen (O&D
Struts), have greatly influenced the design of the JSTL libraries.

The RI team composed of Shawn Bayern (lead), Nathan Abramson, Justyna Horwat,
and Jan Luehe has done a wonderful job at turning code faster than the specification
could be written.

Quiality has been in the capable hands of Ryan Lubke, lead of the TCK team that also
includes Lance Andersen. David Geary’s help in doing thorough reviews of the
specification was also greatly appreciated.

We are also grateful to the product team at Sun Microsystems who helped us sail
efficiently through this specification: Jim Driscoll, Karen Schaffer, George Grigoryeyv,
Stephanie Bodoff, Vanitha Venkatraman, Prasad Subramanian, and Xiaotan He.

Finally, we'd like to thank the community at large for their ever increasing interest in
this technology. We sure hope you’ll enjoy the JSP Standard Tag Library.

Comments

We are interested in improving this specification and welcome your comments and
suggestions. You can email your comments to us at:

jsr-52-coments@cp.org

Preface xiv

xv JSTL 1.1 « November 2003

CHAPTER 1

Introduction

This is the JavaServer Pages™ Standard Tag Library 1.1 (JSTL 1.1) specification,
developed by the JSR-52 expert group under the Java Community Process (http.//
WWW.jCP.Org).

1.1

Goals

The ultimate goal of JSTL is to help simplify JavaServer™ Pages (JSP™) page
authors’ lives.

A page author is someone who is responsible for the design of a web application’s
presentation layer using JSP pages. Many page authors are not fluent in any
programming language.

One of the main difficulties a page author is faced with is the need to use a scripting
language (the default being the Java programming language) to manipulate the
dynamic data within a JSP page. Unfortunately, page authors often see scripting
languages as complex and not very well adapted to their needs.

JSTL offers the following capabilities:

= General-purpose actions

These actions complement the expression language by allowing a page author to
easily display expressions in the expression language, set and remove the value of
JSP scoped attributes, as well as catch exceptions.

= Control flow actions

Tag-based control flow structures (conditionals, iterators), which are more natural
to page authors.

= Tag library validators (TLVSs)

TLVs allow projects to only allow specific tag libraries, as well as enforce JSP
coding styles that are free of scripting elements.

The other key aspect of JSTL is that it provides standard actions and standard EL
functions for functionality most often needed by page authors. These cover the
following topics:

= Accessing URL-based resources

= Internationalization (i18n) and text formatting
= Relational database access (SQL)

= XML processing

= String manipulation

1.2 Multiple Tag Libraries

A tag library is a collection of actions that encapsulates functionality to be used from
within a JSP page. JSTL includes a wide variety of actions that naturally fit into
discrete functional areas. This is why JSTL, although referred to as the standard tag
library (singular), is exposed via multiple tag libraries to clearly identify the
functional areas it covers, as well as to give each area its own namespace. The tables
below lists these functional areas along with the URIs used to reference the libraries.
The tables also show the prefixes used in this specification (although page authors
are free to use any prefix they want).

JSTL Tag Libraries

Functional Area URI Prefix
core http://java.sun.conljsp/jstl/core c
XML processing http://java. sun.conljsp/jstl/xm X
118N capable formatting | http://java. sun.conjsp/jstl/fnt fmt
Eggl;[_i)onal db access http://java.sun.conljsp/jstl/sql sql
Functions http://java.sun.conljsp/jstl/functions fn
1.3 Container Requirement

JSTL 1.1 requires a JSP 2.0 web container. Please note that the expression language is
part of the JSP specification starting with JSP 2.0.

2 JSTL 1.1 « November 2003

CHAPTER 2

Conventions

This chapter describes the conventions used in this specification.

2.1

How Actions are Documented

JSTL actions are grouped according to their functionality. These functional groups of
actions are documented in their own chapter using the following structure:

= Motivation
Describes the motivation for standardizing the actions.
= Overview

Provides an overview of the capabilities provided by the actions. Sample code
featuring these actions in their most common use cases is also provided.

= One section per action, with the following structure:
= Name

Tag library prefixes are used in this specification for all references to JSTL
actions (e.g.: <c:if> instead of <if>).

« Short Description
= Syntax

The syntax notation is described in Section 2.1.2.
« Body Content

This section specifies which type of body content is supported by the action.
As defined by the JSP specification, the body content type can be one of enpt y,
JSP, or t agdependent . The section also specifies if the body content is
processed by the action or is simply ignored by the action and just written to
the current JspW i t er. If the body content is processed, information is given
on whether or not the body content is trimmed before the action begins
processing it.

« Attributes

Details in Section 2.1.1 below.
« Constraints

List of additional constraints enforced by the action.
« Null & Error Handling

Details on how null and empty values are processed, as well as on exceptions
thrown by the action.

« Description
This section provides more details on the action.
= Other sections

Other sections related to the group of actions described in the chapter may exist.
These include sections on interfaces and classes exposed by these actions.

2.1.1 Attributes

4

For each attribute, the following information is given: name, dynamic behavior, type,
and description.

The rt expr val ue element defined in a TLD is covered in this specification with the
column titled “Dynamic” that captures the dynamic behavior of an attribute. The
value can be either true or false. A false value in the dynamic column means that
only a static string value can be specified for the attribute. A true value means that a
request-time attribute value can be specified. As defined in the JSP specification, a
“request-time attribute value” can be either a Java expression, an EL expression, or a
value set by a <jsp:attribute>.

JSTL 1.1 « November 2003

2.1.2

Syntax Notation

[...] What is inside the square brackets is
optional

{optionl]|option2|option3|...} Onlyone of the given options can be
selected

val ue The default value

For example, in the syntax below:

<c:set var="varNane” [scope="{page|request|session|application}”]
val ue="val ue”/ >

the attribute scope is optional. If it is specified, its value must be one of page,
request, sessi on, or appl i cati on. The default value is page.

2.2

Scoped Variables

Actions usually collaborate with their environment in implicit or explicit ways, or
both.

Implicit collaboration is often done via a well defined interface that allows nested
tags to work seamlessly with the ancestor tag exposing that interface. The JSTL
iterator tags support this mode of collaboration.

Explicit collaboration happens when a tag explicitly exposes information to its
environment. Traditionally, this has been done by exposing a scripting variable with
a value assigned from a JSP scoped attribute (which was saved by the tag handler).
Because of the expression language, the need for scripting variables is significantly
reduced. This is why all the JSTL tags expose information only as JSP scoped
attributes (no scripting variable exposed). These exported JSP scoped attributes are
referred to as scoped variables in this specification; this helps in preventing too much
overloading of the term “attribute”.

Chapter2 Conventions 5

2.2.1

2.2.2

var and scope

The convention is to use the name var for attributes that export information. For
example, the <c:forEach> action exposes the current item of the customer collection
it is iterating over in the following way:

<c: forEach var="custoner” itenms="${custoners}”>
Current custoner is <c:out value="${custoner}”/>
</c:forEach>

It is important to note that a name different than i d was selected to stress the fact
that only a scoped variable (JSP scoped attribute) is exposed, without any scripting
variable.

If the scoped variable has at-end visibility (see Section 2.2.2), the convention also
establishes the attribute scope to set the scope of the scoped variable.

The scope attribute has the semantics defined in the JSP specification, and takes the
same values as the ones allowed in the <jsp:useBean> action; i.e. page, r equest,
sessi on, appl i cati on. If no value is specified for scope, page scope is the
default unless otherwise specified.

It is also important to note, as per the JSP specification, that specifying "session”
scope is only allowed if the page has sessions enabled.

If an action exposes more than one scoped variable, the main one uses attribute
names var and scope, while secondary ones have a suffix added for unique
identification. For example, in the <c:forEach> action, the var attribute exposes the
current item of the iteration (main variable exposed by the action), while the

var St at us attribute exposes the current status of the iteration (secondary variable).

Visibility

Scoped variables exported by JSTL actions are categorized as either nested or at-end.
Nested scoped variables are only visible within the body of the action and are stored
in "page” scopel. The action must create the variable according to the semantics of
PageCont ext . set Attri but e(var Nane, PAGE_SCOPE), and it must remove it at

the end of the action according to the semantics of
PageCont ext . r enpveAt t ri but e(var Name, PAGE_SCOPE) .2

At-end scoped variables are only visible at the end of the action. Their lifecycle is the
one associated with their associated scope.

1. Since nested scoped variables are always saved in page scope, no scope attribute is associated with them.

6 JSTL 1.1 » November 2003

In this specification, scoped variables exposed by actions are considered at-end by
default. If a scoped variable is nested, it will be explicitly stated.

2.3

Static vs Dynamic Attribute Values

Except for the two exceptions described below, attribute values of JSTL actions can
always be specified dynamically (see Section 2.1.1).

The first exception to this convention is for the sel ect attribute of XML actions.
This attribute is reserved in JSTL to specify a St ri ng literal that represents an
expression in the XPath language.

The second exception is for attributes that define the name and scope of scoped
variables (as introduced in Section 2.1.1) exported by JSTL actions.

Restricting these attributes to static values should benefit development tools,
without any impediment to page authors.

2.4

White Spaces

Following the JSP specification (as well as the XML and XSLT specifications),
whitespace characters are #x20, #x9, #xD, or #xA.

2.5

Body Content

If an action accepts a body content, an empty body is always valid, unless explicitly
stated otherwise.

If the body content is used to set the value of an attribute, then an empty body
content sets the attribute value to an empty string.

2. Itisimportant to note that the JSP specification says that "A name should refer to a unique object at all points
in the execution, that is all the different scopes really should behave as a single name space." The JSP
specification also says that "A JSP container implementation may or may not enforce this rule explicitly due to
performance reasons". Because of this, if a scoped variable with the same name as a nested variable already
exists in a scope other than 'page’, exactly what happens to that scoped variable depends on how the JSP
container has been implemented. To comply with the JSP specification, and to avoid non-portable behavior,
page authors should therefore avoid using the same name in different scopes.

Chapter 2 Conventions 7

If a body content is trimmed prior to being processed by the action, it is trimmed as
defined in method tri m() of the class j ava. |l ang. Stri ng.

2.6

Naming

JSTL adopts capitalization conventions of Java variables for compound words in
action and attribute names. Recommended tag prefixes are kept lowercase. Thus,
we have <sgl:transaction> and <c:forEach>, as well as attributes such as

docSyst enl d and var Dom

In some cases, attribute names for JSTL actions carry conventional meanings. For
instance, Section 2.2.1 discussed the var and scope attibutes. Section 11.1.5
discusses the sel ect attribute used in JSTL's XML-processing tag library.

2.7

Errors and Exceptions

All syntax errors (as defined in the syntax section of each action, as well as the
syntax of EL expressions as defined in Appendix A) must be reported at translation
time.

Constraints, as defined in the constraints section of each action, must also be
reported at translation time unless they operate on a dynamic attribute value, in
which case errors are reported at runtime.

The conversion from a St ri ng value to the expected type of an attribute is handled
according to the rules defined in the JSP specification.

Since it is hard for a page author to deal with exceptions, JSTL tries to avoid as many
exception cases as possible, without causing other problems.

For instance, if <c:forEach> were to throw an exception when given a null value for
the attribute i t ens, it would be impossible to easily loop over a possibly missing
string array that represents check-box selection in an HTML form (retrieved with an
EL expression like ${ par anVal ues. sel ecti ons}). A better choice is to do
nothing in this case.

The conventions used in JSTL with respect to errors and exceptions are as follows:
= Scope

« Invalid value - translation time validation error
= var

8 JSTL 1.1 « November 2003

« Empty - translation time validation error

= Dynamic attributes with a fixed set of valid String values:

« null — use the default value
A null value can therefore be used to dynamically (e.g. by request
parameter), turn on or off special features without too much work.

« Invalid value - throw an exception
If a value is provided but is not valid, it's likely a typo or another mistake.
= Dynamic attributes without a fixed set of valid values:

The rules below assume that if the type of the value does not match the expected
type, the EL will have applied coercion rules to try to accomodate the input value.
Moreover, if the expected type is one of the types handled by the EL coercion
rules, the EL will in most cases coerce null to an approriate value. For instance, if
the expected type is a Nunber, the EL will coerce a null value to 0, if it's Bool ean
it will be coerced to false.

« null — behavior specific to the action
If this rule is applied, it’s because the EL could not coerce the null into an
appropriate default value. It is therefore up to the action to deal with the null
value and is documented in the “Null & Error Handling” section of the
action.

« Invalid type — throw an exception
« Invalid value - throw an exception
= Exceptions caused by the body content:
Always propagate, possibly after handling them (e.g. <sql:transaction>).
= Exceptions caused by the action itself:
Always propagate, possibly after handling them.
= Exceptions caused by the EL:
Always propagate.
= Exceptions caused by XPath:
Always propagate.

Page authors may catch an exception using <c:catch>, which exposes the exception
through its var attribute. var is removed if no exception has occurred.

When this specification requires an action to throw an exception, this exception must
be an instance of j avax. servl et.j sp. JspExcepti on or a subclass. If an action
catches any exceptions that occur in its body, its tag handler must provide the caught
exception as the root cause of the JspExcepti on it re-throws.

Also, by default, JSTL actions do not catch or otherwise handle exceptions that occur
during evaluation of their body content. If they do, it is documented in their “Null &
Error Handling” or “Description” section.

Chapter2 Conventions 9

2.8

Configuration Data

Context initialization parameters (see Servlet specification) are useful to configure
the behavior of actions. For example, it is possible in JSTL to define the resource
bundle used by 118N actions via the deployment descriptor (web.xml) as follows:

<web- app>

<cont ext - par an>
<par am nane>j avax. servlet.jsp.jstl.fnt.|ocalizationContext</
par am name>
<par am val ue>com acre. M/Resour ces</ par am val ue>
</ cont ext - par an>

</ web- app>

In many cases, it is also useful to allow configuration data to be overridden
dynamically for a particular JSP scope (page, request, session, application) via a
scoped variable. JSTL refers to scoped variables used for that purpose as
configuration variables.

According to the JSP specification (JSP.2.8.2), a scoped variable name should refer to
a unique object at all points in the execution. This means that all the different scopes
(page, request, session, and application) that exist within a PageCont ext really
should behave as a single name space; setting a scoped variable in any one scope
overrides it in any of the other scopes.

Given this constraint imposed by the JSP specification, and in order to allow a
configuration variable to be set for a particular scope without affecting its settings in
any of the other scopes, JSTL provides the Conf i g class (see Chapter 16 “Java
APIs”). The Confi g class transparently manipulates the name of configuration
variables so they behave as if scopes had their own private name space. Details on
the name manipulations involved are voluntarily left unspecified and are handled
transparently by the Conf i g class. This ensures flexibility should the “scope name
space” issue be addressed in the future by the JSP specification.

When setting configuration data via the deployment descriptor, the name associated
with the context initialization parameter (e.g.
javax.servlet.jsp.jstl.fnt.localizationContext) mustbe used and only
St ri ng values may be specified. Configuration data that can be set both through a
context initialization parameter and configuration variables is referred to as a
configuration setting in this specification.

10 JSTL 1.1 » November 2003

As mentioned above, application developers may access configuration data through
class Confi g (see Chapter 16 “Java APIs”) . As a convenience, constant St ri ng
values have been defined in the Confi g class for each configuration setting
supported by JSTL. The values of these constants are the names of the context
intialization parameters.

Each configuration variable clearly specifies the Java data type(s) it supports. If the
type of the object used as the value of a configuration variable does not match one of
those supported by the configuration variable, conversion is performed according to
the conversion rules defined in the expression language. Setting a configuration
variable is therefore exactly the same as setting an attribute value of an action using
the EL. A failure of these conversion rules to determine an appropriate type coersion
leads to a JspExcepti on at runtime.

2.9

Default Values

It is often desirable to display a default value if the output of an action yields a null
value. This can be done in a generic way in JSTL by exporting the output of an
action via attribute var, and then displaying the value of that scoped variable with
action <c:out>.

For example:

<fnt:formatDate var="formattedDate” val ue="${reservationDate}”"/>
Date: <c:out value="${fornattedDate}” default="not specified’/>

Chapter 2 Conventions 11

12 JSTL 1.1 » November 2003

CHAPTER 3

Expression Language Overview

JSTL 1.0 introduced the notion of an expression language (EL) to make it easy for
page authors to access and manipulate application data without having to master
the complexity associated with programming languages such as Java and JavaScript.

Starting with JSP 2.0 / JSTL 1.1, the EL has become the responsibility of the JSP
specification and is now formally defined there.

This chapter provides a simple overview of the key features of the expression
language, it is therefore non-normative. Please refer to the JSP specification for the
formal definition of the EL.

3.1

Expressions and Attribute Values

The EL is invoked exclusively via the construct ${ expr} . In the sample code below,
an EL expression is used to set the value of attribute t est, while a second one is
used to display the title of a book.

<c:if test="${book.price <= user.preferences.spendingLimt}">
The book ${book.title} fits your budget!
</ciif>

13

It is also possible for an attribute to contain more than one EL expression, mixed
with static text. For example, the following would display “Price of productName is
productPrice” for a list of products.

<c: forEach var="product"” itenms="${products}”>

<c:out value="Price of ${product.nanme} is ${product.price}”/>
</c:forEach>

3.2 Accessing Application Data

An identifier in the EL refers to the JSP scoped variable returned by a call to
PageContext.findAttribute(identifier). This variable can therefore reside
in any of the four JSP scopes: page, request, session, or application. A null value is
returned if the variable does not exist in any of the scopes.

The EL also defines implicit objects to support easy access to application data that is
of interest to a page author. Implicit objects pageScope, r equest Scope,

sessi onScope, and appl i cati onScope provide access to the scoped variables in
each one of these JSP scopes. It is also possible to access HTTP request parameters
via the implicit objects par amand par anVal ues. par amis a Map object where
paran{ "foo"] returns the first string value associated with request parameter f 0o,
while par anVal ues[" fo00"] returns an array of all string values associated with
that request parameter.

The code below displays all request parameters along with all their associated
values.

<c:forEach var="aParani itenms="%${paranVal ues}">
param ${aParam key}
val ues:
<c: forEach var="aVal ue" itens="${aParam val ue}">
${ aVal ue}
</c:forEach>

</ c: forEach>

Request headers are also accessible in a similar fashion via implicit objects header
and header Val ues. i ni t Par amgives access to context initialization parameters,
while cooki e exposes cookies received in the request.

14 JSTL 1.1 » November 2003

Implicit object pageCont ext is also provided for advanced usage, giving access to
all properties associated with the PageCont ext of a JSP page such as the

Ht t pSer vl et Request, Ser vl et Cont ext, and Ht t pSessi on objects and their
properties.

3.3

Nested Properties and Accessing
Collections

The application data that a page author manipulates in a JSP page usually consists of
objects that comply with the JavaBeans specification, or that represent collections
such as lists, maps, or arrays.

The EL recognizes the importance of these data structures and provides two
operators, “.” and “[]”, to make it easy to access the data encapsulated in these
objects.

The "." operator can be used as a convenient shorthand for property access when the
property name follows the conventions of Java identifiers. For example:

Dear ${user.firstNanme}
from ${user. address. city},
thanks for visiting our website!

The “[]” operator allows for more generalized access, as shown below:

<% - “productDir” is a Map object containing the description of
products, “preferences” is a Map object containing the
preferences of a user --%

product :

${productDi r[product. custld]}

shi ppi ng preference:

${user. preferences[“shipping’]}

Chapter 3 Expression Language Overview 15

3.4

Operators

The operators supported in the EL handle the most common data manipulations.
The standard relational, arithmetic, and logical operators are provided in the EL. A
very useful “empty” operator is also provided.

The six standard relational operators are supported: == (or eq), ! = (or ne), < (or | t),
> (or gt), <= (orl e), >= (or ge). The second versions of the last 4 operators are made
available to avoid having to use entity references in XML syntax.

Arithmetic operators consist of addition (+), substraction (-), multiplication (*),
division (/ or di v), and remainder/modulo (%or nod).

Logical operators consist of & (or and), || (or or), and! (or not).

The enpt y operator is a prefix operator that can used to determine if a value is null
or empty. For example:

<c:if test="${enpty param nane}”>
Pl ease specify your nane.
<fc:if>

3.5

Automatic Type Conversion

The application data a page author has access to may not always exactly match the
type expected by the attribute of an action or the type expected for an EL operator.
The EL supports an exhaustive set of rules to coerce the type of the resulting value
to the expected type.

For example, if request attributes begi nVal ue and endVal ue are | nt eger objects,
they will automatically be coerced to i nt s when used with the <c:forEach> action.

<c: forEach begi n="${request Scope. begi nVal ue}”
end="${r equest Scope. endVal ue} " >

</ c: forEach>

16 JSTL 1.1 » November 2003

In the example below, the parameter String value par am st art is coerced to a
number and is then added to 10 to yield an int value for attribute begi n.

<c:forEach itenms="${products}” begin="${paramstart + 10}">

</ c: forEach>

3.6

Default Values

JSP pages are mostly used in presentation. Experience suggests that it is important to
be able to provide as good a presentation as possible, even when simple errors occur
in the page. To satisfy this requirement, the EL provides default values rather than
errors when failure to evaluate an expression is deemed “recoverable”. Default
values are type-correct values that allow a page to easily recover from these error
conditions.

In the following example, the expression " ${ user . address. ci ty}” evaluates to
nul | rather than throwing a Nul | Poi nt er Except i on if there is no address
associated with the user object. This way, a sensible default value can be displayed
without having to worry about exceptions being thrown by the JSP page.

City: <c:out value="${user.address.city}” default="NA"/>

In the following example, the addition operator considers the value of
param start to be 0 if it is not defined, therefore evaluating the expression to 10.

<c:forEach itenms="${products}” begin="${paramstart + 10}">

</ c: forEach>

Chapter 3 Expression Language Overview 17

18 JSTL 1.1 » November 2003

CHAPTER 4—

General-Purpose Actions
core tag library

This chapter introduces general purpose actions to support the manipulation of
scoped variables as well as to handle error conditions.

4.1

Overview

The <c:out> action provides a capability similar to JSP expressions such as <%=
scripting-language-expression %> or ${el-expression}. For example:

You have <c:out val ue="${sessi onScope. user.itenCount}"/> itens.

By default, <c:.out> converts the characters <, >, ', ", & to their corresponding
character entity codes (e.g. < is converted to <). If these characters are not
converted, the page may not be rendered properly by the browser, and it could also
open the door for cross-site scripting attacks (e.g. someone could post JavaScript
code for closing the window to an online discussion forum). The conversion may be
bypassed by specifying false to the escapeXmi attribute.

The <c:out> action also supports the notion of default values for cases where the
value of an EL expression is null. In the example below, the value “unknown” will
be displayed if the property ci ty is not accessible.

<c:out val ue="${custoner. address.city}" default="unknown"/>

19

20

The action <c:set> is used to set the value of a JSP scoped attribute as follows:

<c:set var="foo” val ue="val ue”/>

It is also possible to set the value of a scoped variable (JSP scoped attribute) from the
body of the <c:set> action. This solves the problem associated with not being able to
set an attribute value from another action. In the past, a tag developer would often
implement extra "attributes as tags" so the value of these attributes could be set from
other actions.

For example, the action <acme:att1> was created only to support setting the value of
att 1 of the parent tag <acme:atag> from other actions .

<acne: at ag>
<acne:att1>
<acne: f oo>nmunboj unbo</ acne: f oo>
</acne:att 1>
</ acre: at ag>

With the <c:set> tag, this can be handled without requiring the extra <acme:attl>
tag.

<c:set var="attl">

<acne: f oo>munboj unbo</ acne: f oo>
</c:set>
<acme:atag attl="${att1}"/>

In the preceding example, the <c:set> action sets the value of the att 1 scoped
variable to the output of the <acme:foo> action. <c:set> — like all JSTL actions that
create scoped attributes — creates scoped attributes in “page” scope by default.

<c:set> may also be used to set the property of a JavaBeans object, or add or set a
specific element in aj ava. uti | . Map object. For example..

<l-- set property in JavaBeans object -->
<c:set target="${cust.address}" property="city" value="${city}"/>

<l-- set/add el enent in Map object -->
<c:set target="${preferences}" property="col or"
val ue="${paramcolor}"/ >

JSTL 1.1 « November 2003

Action <c:remove> is the natural companion to <c:set>, allowing the explicit
removal of scoped variables. For example:

<c:renove var="cachedResul t" scope="application"/>

Finally, the <c:catch> action provides a complement to the JSP error page
mechanism. It is meant to allow page authors to recover gracefully from error
conditions that they can control. For example:

<c:catch var="exception”>
<!-- Execution we can recover fromif exception occurs -->

</c:catch>

<c:if test="%{exception != null}">
Sorry. Processing could not be performed because. ..
</ciif>

Chapter 4 General-Purpose Actions 21

4.2

22

<c.out>

Evaluates an expression and outputs the result of the evaluation to the current
JspW i t er object.

Syntax

Without a body

<c:out val ue="val ue”

[escapeXm ="{true| fal se}”]

[def aul t =" def aul t Val ue”] />

With a body

<c:out value="val ue” [escapeXm ="{true|false}"]>

default val ue

</ c:out >

Body Content

JSP. The JSP container processes the body content, then the action trims it and

processes it further.

Attributes
Name Dyn Type Description

val ue true oj ect Expression to be evaluated.
Deterrmines whether characters <,>,&,”,” in the
resulting string should be converted to their

escapeXni true bool ean . - .
corresponding character entity codes. Default value is
true.

def aul t true oj ect Default value if the resulting value is null.

Null & Error Handling

= If val ue is null, the default value takes over. If no default value is specified, it
itself defaults to an empty string.

Description

The expression to be evaluated is specified via the val ue attribute.

JSTL 1.1 « November 2003

If the result of the evaluation is not a j ava. i 0. Reader object, then it is coerced to
a String and is subsequently emitted into the current JspW i t er object.

If the result of the evaluation isaj ava. i 0. Reader object, data is first read from the

Reader object and then written into the current JspW i t er object. This special

processing associated with Reader objects should help improve performance when
large amount of data must be read and then displayed to the page.

If escapeXm is true, the following character conversions are applied:

Character Character Entity Code
< <
> > ;
& &anp;
‘ '
“ "

The default value can be specified either via the def aul t attribute (using the syntax

without a body), or within the body of the tag (using the syntax with a body). It

defaults to an empty string.

Chapter 4

General-Purpose Actions

23

4.3

<c:.set>

Sets the value of a scoped variable or a property of a target object.

Syntax

Syntax 1: Set the value of a scoped variable using attribute value
<c:set val ue="val ue”
var ="var Nane” [scope="{page|request|session|application}”]/>

Syntax 2: Set the value of a scoped variable using body content

<c:set var="varNanme” [scope="{page|request|session|application}”]>
body content

</c:set>

Syntax 3: Set a property of a target object using attribute value
<c:set val ue="val ue”
target="target” property="propertyNanme”/>

Syntax 4: Set a property of a target object using body content

<c:set target="target” property="propertyNane”>
body cont ent

</c:set>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes
Name Dyn Type Description
val ue true oj ect Expression to be evaluated.

Name of the exported scoped variable to hold the value
var false | String |specified in the action. The type of the scoped variable is
whatever type the value expression evaluates to.

scope false | String | Scope for var.

Target object whose property will be set. Must evaluate to
tar get true oj ect a JavaBeans object with setter property property, or to a
java. util . Map object.

property | true String | Name of the property to be set in the target object.

24 JSTL 1.1 » November 2003

Null & Error Handling

= Syntax 3 and 4: Throw an exception under any of the following conditions:
« target evaluates to null
« target isnotajava.util.Map object and is not a JavaBeans object that
supports setting property pr operty.

=« If val ue is null
« Syntax 1: the scoped variable defined by var and scope is removed.
« If attribute scope is specified, the scoped variable is removed according to
the semantics of PageCont ext . renoveAttri but e(var Nane, scope).
« Otherwise, the scoped variable is removed according to the semantics of
PageCont ext . renoveAt tri but e(var Nane) .
« Syntax 3:
« iftarget is a Map, remove the entry with the key identified by property.
« iftarget is aJavaBean component, set the property to null.

Description

Syntax 1 and 2 set the value of a the scoped variable identified by var and scope.

Syntax 3 and 4:

= If the target expression evaluates to aj ava. uti | . Map object, set the value of the
element associated with the key identified by pr operty. If the element does not
exist, add it to the Map object.

= Otherwise, set the value of the property pr operty of the JavaBeans object
t ar get . If the type of the value to be set does not match the type of the bean
property, conversion is performed according to the conversion rules defined in
the expression language (see Section A.7). With the exception of a null value,
setting a bean property with <c:set> is therefore exactly the same as setting an
attribute value of an action using the EL. A failure of these conversion rules to
determine an appropriate type coersion leads to a JspExcept i on at runtime.

Chapter 4 General-Purpose Actions 25

4.4 <c.remove>

Removes a scoped variable.

Syntax

<c:renove var="var Nane”
[scope="{page| r equest | sessi on| application}”"]/>

Attributes
Name Dynamic Type Description
var false String | Name of the scoped variable to be removed.
scope false String | Scope for var.
Description

The <c:remove> action removes a scoped variable.

If attribute scope is not specified, the scoped variable is removed according to the
semantics of PageCont ext . renoveAttri but e(var Nane) . If attribute scope is
specified, the scoped variable is removed according to the semantics of

PageCont ext . removeAt tri but e(var Name, scope).

26 JSTL 1.1 » November 2003

4.5

<c:.catch>

Catches a j ava. | ang. Thr owabl e thrown by any of its nested actions.

Syntax

<c:catch [var="varNane”] >
nested actions
</c:catch>

Body Content

JSP. The body content is processed by the JSP container and the result is written to
the current JspWi ter.

Attributes

Name Dynamic Type Description

Name of the exported scoped variable for the
var false String | exception thrown from a nested action. The type of the
scoped variable is the type of the exception thrown.

Description

The <c:catch> action allows page authors to handle errors from any action in a
uniform fashion, and allows for error handling for multiple actions at once.

<c:catch> provides page authors with granular error handling: Actions that are of
central importance to a page should not be encapsulated in a <c:catch>, so their
exceptions will propagate to an error page, whereas actions with secondary
importance to the page should be wrapped in a <c:catch>, so they never cause the
error page mechanism to be invoked.

The exception thrown is stored in the scoped variable identified by var, which
always has page scope. If no exception occurred, the scoped variable identified by
var is removed if it existed.

If var is missing, the exception is simply caught and not saved.

Chapter 4 General-Purpose Actions 27

28 JSTL 1.1 » November 2003

CHAPTER 5

Conditional Actions
core tag library

The output of a JSP page is often conditional on the value of dynamic application
data. A simple scriptlet with an i f statement can be used in such situations, but this
forces a page author to use a scripting language whose syntax may be troublesome
(e.g. one may forget the curly braces).

The JSTL conditional actions make it easy to do conditional processing in a JSP page.

5.1

Overview

The JSTL conditional actions are designed to support the two most common usage
patterns associated with conditional processing: simple conditional execution and
mutually exclusive conditional execution.

A simple conditional execution action evaluates its body content only if the test
condition associated with it is true. In the following example, a special greeting is
displayed only if this is a user’s first visit to the site:

<c:if test="${user.visitCount == 1}">
This is your first visit. Wl come to the site!
</ciif>

29

30

With mutually exclusive conditional execution, only one among a number of possible
alternative actions gets its body content evaluated.

For example, the following sample code shows how the text rendered depends on a
user’s membership category.

<c: choose>

<c:when test="${user.category == "trial'}">
</ c: when>

<c:when test="${user.category == 'nenber'}”">
</ c: when>

<c:when test="${user.category == '"vip'}">

</ c: when>

<c: ot herw se>

</ c: ot herw se>
</ ¢c: choose>

Ani f/then/ el se statement can be easily achieved as follows:

<c: choose>

<c:when test="${count == 0}">
No records matched your sel ection.
</ c: when>

<c: ot herw se>
${count} records matched your sel ection.
</c: ot herw se>
</ c: choose>

JSTL 1.1 « November 2003

5.2

Custom Logic Actions

It is important to note that the <c:if> and <c:when> actions have different semantics.
A <c:if> action will always process its body content if its test condition evaluates to
true. A <c:when> action will process its body content if it is the first one in a series
of <c:when> actions whose test condition evaluates to true.

These semantic differences are enforced by the fact that only <c:when> actions can
be used within the context of a mutually exclusive conditional execution (<c:choose>
action). This clean separation of behavior also impacts the way custom logic actions
(i.e. actions who render their bodies depending on the result of a test condition)
should be designed. Ideally, the result associated with the evaluation of a custom
logic action should be usable both in the context of a simple conditional execution,
as well as in a mutually exclusive conditional execution.

The proper way to enable this is by simply having the custom logic action export the
result of the test condition as a scoped variable. This boolean result can then be used
as the test condition of a <c:when> action.

In the example below, the fictitious custom action <acme:fullMoon> tells whether or
not a page is accessed during a full moon. The behavior of ani f/t hen/ el se
statement is made possible by having the result of the <acme:fullMoon> action
exposed as a boolean scoped variable that is then used as the test condition in the
<c:when> action.

<acne: ful | Moon var="isFul | Moon"/>
<c: choose>
<c:when test="${i sFul | Moon}">

</ ¢c: when>
<c: ot herw se>

</ c: ot herw se>
</ c: choose>

To facilitate the implementation of conditional actions where the boolean result is
exposed as a JSP scoped variable, class Condi t i onal TagSupport (see Chapter 16
“Java APIs”) has been defined in this specification.

Chapter 5 Conditional Actions 31

5.3 <c:if>

Evaluates its body content if the expression specified with the t est attribute is true.

Syntax

Syntax 1: Without body content
<c:if test="testCondition”
var ="var Nane” [scope="{page|request|session|application}”]/>

Syntax 2: With body content
<c:if test="testCondition”
[var="var Nane”] [scope="{page|request|session|application}”]>
body cont ent
</c:iif>

Body Content

JSP. If the test condition evaluates to true, the JSP container processes the body
content and then writes it to the current JspWi ter.

Attributes
Name | Dyn Type Description
The test condition that determines whether or
t est true bool ean

not the body content should be processed.

Name of the exported scoped variable for the
var false String resulting value of the test condition. The type
of the scoped variable is Bool ean.

scope | false String Scope for var.

Constraints

= If scope is specified, var must also be specified.

Description

If the test condition evaluates to true, the body content is evaluated by the JSP
container and the result is output to the current JspWiter.

32 JSTL 1.1 « November 2003

5.4

<c:.choose>

Provides the context for mutually exclusive conditional execution.

Syntax

<c: choose>
body content (<when> and <ot herw se> subt ags)
</ c: choose>

Body Content

JSP. The body content is processed by the JSP container (at most one of the nested
actions will be processed) and written to the current JspWi t er.

Attributes

None.

Constraints

= The body of the <c:choose> action can only contain;
« White spaces
May appear anywhere around the <c:when> and <c:otherwise> subtags.
« 1 or more <c:when> actions
Must all appear before <c:otherwise>
« 0 or 1 <c:otherwise> action
Must be the last action nested within <c:choose>

Description

The <c:choose> action processes the body of the first <c:when> action whose test
condition evaluates to true. If none of the test conditions of nested <c:when> actions
evaluates to true, then the body of an <c:otherwise> action is processed, if present.

Chapter 5 Conditional Actions 33

5.5

<c:when>

Represents an alternative within a <c:choose> action.

Syntax

<c:when test="testCondition”>
body cont ent
</ c: when>

Body Content

JSP. If this is the first <c:when> action to evaluate to true within <c:choose>, the JSP
container processes the body content and then writes it to the current JspWi ter.

Attributes
Name | Dynamic Type Description
The test condition that determines whether or not the
t est true bool ean
body content should be processed.

Constraints

= Must have <c:choose> as an immediate parent.
= Must appear before an <c:otherwise> action that has the same parent.

Description

Within a <c:choose> action, the body content of the first <c:when> action whose test
condition evaluates to true is evaluated by the JSP container, and the result is output
to the current JspWi ter.

34 JSTL 1.1 « November 2003

5.6

<c:.otherwise>

Represents the last alternative within a <c:choose> action.

Syntax

<c: ot herw se>
condi tional bl ock
</ c: ot herw se>

Body Content

JSP. If no <c:when> action nested within <c:choose> evaluates to true, the JSP
container processes the body content and then writes it to the current JspWi ter.

Attributes

None.

Constraints

= Must have <c:choose> as an immediate parent.
= Must be the last nested action within <c:choose>.

Description

Within a <c:choose> action, if none of the nested <c:when> test conditions evaluates
to true, then the body content of the <c:otherwise> action is evaluated by the JSP
container, and the result is output to the current JspWiter.

Chapter 5 Conditional Actions 35

36 JSTL 1.1 « November 2003

CHAPTER 6

Iterator Actions
core tag library

Iterating over a collection of objects is a common occurrence in a JSP page. Just as
with conditional processing, a simple scriptlet can be used in such situations.
However, this once again forces a page author to be knowledgeable in many aspects
of the Java programming language (how to iterate on various collection types,
having to cast the returned object into the proper type, proper use of the curly
braces, etc.).

The JSTL iterator actions simplify iterating over a wide variety of collections of
objects.

6.1

Overview

The <c:forEach> action repeats its nested body content over the collection of objects
specified by the i t ens attribute. For example, the JSP code below creates an HTML
table with one column that shows the default display value of each item in the
collection.

<t abl e>
<c: forEach var="custonmer” itens="${custoners}”>
<tr><td>${custoner}</td></tr>
</ c:forEach>
</t abl e>

The <c:forEach> action has the following features:
= Supports all standard J2SE™ platform collection types.

A page author therefore does not have to worry about the specific type of the
collection of objects to iterate over (see Section 6.1.1).

37

38

6.1.1

= Exports an object that holds the current item of the iteration.

Normally, each object exposed by <c:forEach> is an item of the underlying
collection being iterated over. There are two exceptions to this to facilitate access
to the information contained in arrays of primitive types, as well as in Map objects
(see Section 6.1.2).

= Exports an object that holds information about the status of the iteration (see
Section 6.1.3).

= Supports range attributes to iterate over a subset of the original collection (see
Section 6.1.4).

= Exposes an interface as well as a base implementation class.

Developers can easily implement collaborating subtags as well as their own
iteration tags (see Section 6.1.5).

<c:forEach> is the base iteration action in JSTL. It handles the most common
iteration cases conveniently. Other iteration actions are also provided in the tag
library to support specific, specialized functionality not handled by <c:forEach> (e.g.
<c:forTokens> (Section 6.3) and <x:forEach> (Section 12.6)). Developers can also
easily extend the behavior of this base iteration action to customize it according to
an application's specific needs.

Collections of Objects to Iterate Over

A large number of collection types are supported by <c:forEach>, including all
implementations of j ava. uti |l . Col | ecti on (includes Li st, Li nkedLi st
Arrayli st, Vector, Stack, Set), andjava.util.Mp (includes HashMap,
Hasht abl e, Properti es, Provi der, Attri but es).

Arrays of objects as well as arrays of primitive types (e.g. i nt) are also supported.
For arrays of primitive types, the current item for the iteration is automatically
wrapped with its standard wrapper class (e.g. | nt eger forint, Fl oat for fl oat,
etc.).

Implementations of j ava. util.lterator andjava. util.Enuneration are
supported as well but these must be used with caution. | t er at or and

Enuner at i on objects are not resettable so they should not be used within more
than one iteration tag.

Deprecated: Finally, j ava. | ang. St ri ng objects can be iterated over if the string
represents a list of comma separated values (e.g.
“Monday, Tuesday, Wednesday, Thursday,Friday”).t

Absent from the list of supported types is j ava. sql . Resul t Set (which includes
j avax. sql . RowSet). The reason for this is that the SQL actions described in

Section 10.1 use the j avax. servl et.jsp.jstl.sql.Result interface to access
1. The proper way to process strings of tokens is via <c:forTokens> or via functions spl i t andj oi n.

JSTL 1.1 « November 2003

6.1.2

6.1.3

the data returned from an SQL query. Class
javax.servlet.jsp.jstl.sqgl.ResultSupport (see Chapter 16 “Java APIs")
allows business logic developers to easily convert a Resul t Set object into a
javax.servlet.jsp.jstl.sqgl.Result object, making life much easier for a
page author that needs to manipulate the data returned from a SQL query.

Map

If the i t ens attribute is of type j ava. uti | . Map, then the current item will be of
type j ava. uti | . Map. Ent ry, which has the following two properties:

= key - the key under which this item is stored in the underlying Map

= val ue - the value that corresponds to this key

The following example uses <c:forEach> to iterate over the values of a Hasht abl e:

<c:forEach var="entry" itens="${nyHasht abl e}">
Next element is ${entry.val ue}/>
</ c:forEach>

Iteration Status

<c:forEach> also exposes information relative to the iteration taking place. The
example below creates an HTML table with the first column containing the position
of the item in the collection, and the second containing the name of the product.

<t abl e>
<c:forEach var="product” itenms="%${products}”
var St at us="st at us” >
<tr>
<td>${status. count}”</td>
<t d>${ product . nane}" </ td>
</tr>
</c:forEach>
</t abl e>

See Chapter 16 “Java APIs" for details on the LoopTagSt at us interface exposed by
the var St at us attribute.

Chapter 6 Iterator Actions 39

6.1.4

6.1.5

Range Attributes

A set of range attributes is available to iterate over a subset of the collection of items.
The begi n and end indices can be specified, along with a st ep. If the i t ens
attribute is not specified, then the value of the current item is set to the integer value
of the current index. In this example, i would take values from 100 to 110
(inclusive).

<c:forEach var="i" begi n="100" end="110">
${i}

</ c: forEach>

Tag Collaboration

Custom actions give developers the power to provide added functionality to a JSP
application without requiring the page author to use Java code. In this example, an
item of the iteration is processed differently depending upon whether it is an odd or
even element.

<c:forEach var="product" items="${products}" varStatus="status">
<c: choose>
<c:when test="${status.count %2 == 0}">
even item
</ c: when>
<c: ot herw se>
odd item
</ c: ot herw se>
</ c: choose>
</c:forEach>

If this type of processing is common, it could be worth providing custom actions
that yield simpler code, as shown below.

<c:forEach var="product" items="${products}">
<acne: even>
even item
</ acne: even>
<acne: odd>
odd item
</ acne: odd>
</ c: forEach>

40 JSTL 1.1 « November 2003

In order to make this possible, custom actions like <acme:odd> and <acme:even>
leverage the fact that <c:forEach> supports implicit collaboration via the interface
LoopTag (see Chapter 16 “Java APIs").

The fact that <c:forEach> exposes an interface also means that other actions with
iterative behavior can be developed using the same interface and will collaborate in
the same manner with nested tags. Class LoopTagSupport (see Chapter 16 “Java
APIs") provides a solid base for doing this.

Chapter 6 lterator Actions 41

6.2 <c:forEach>

Repeats its nested body content over a collection of objects, or repeats it a fixed
number of times.

Syntax

Syntax 1: Iterate over a collection of objects
<c: forEach[var="varNane”] itens="coll ection”
[var St at us="var St at usNane” |
[begi n="begi n”] [end="end”] [step="step”]>

body cont ent
</ c: for Each>
Syntax 2: Iterate a fixed number of times
<c: forEach [var="var Nane”]

[var St at us="var St at usNane” |
begi n="begi n” end="end” [step="step”]>

body content
</ c:forEach>

Body Content

JSP. As long as there are items to iterate over, the body content is processed by the
JSP container and written to the current JspWi ter.

42 JSTL 1.1 « November 2003

Attributes

Name Dyn Type Description

Name of the exported scoped variable for the
current item of the iteration. This scoped

var false String variable has nested visibility. Its type depends
on the object of the underlying collection.
Any of the supported
itens true type_s described in Collection of items to iterate over.
Section

“Description” below.

Name of the exported scoped variable for the
status of the iteration. Object exported is of
type

javax.servlet.jsp.jstl.core. LoopTagS
t at us. This scoped variable has nested
visibility.

var St at us | false String

If itens specified:

Iteration begins at the item located at the
specified index. First item of the collection has
begi n true int index 0.

If itens not specified:

Iteration begins with index set at the value
specified.

If i t ens specified:
Iteration ends at the item located at the
specified index (inclusive).

end true it If i t ens not specified:
Iteration ends when index reaches the value
specified.

step true int Iteration will only process every st ep items of

the collection, starting with the first one.

Constraints

= If specified, begi n must be >= 0.
= If end is specified and it is less than begi n, the loop is simply not executed.
= |If specified, st ep must be >=1

Null & Error Handling

=« Ifitens isnull, itis treated as an empty collection, i.e., no iteration is performed.

Chapter 6 Iterator Actions 43

44

Description

If begi n is greater than or equal to the size of i t ens, no iteration is performed.

Collections Supported & Current Item

The data types listed below must be supported for i t ens. With syntax 1, each object
exposed via the var attribute is of the type of the object in the underlying collection,
except for arrays of primitive types and maps (see below). With syntax 2, the object
exported is of type | nt eger.

Arrays

This includes arrays of objects as well as arrays of primitive types. For arrays of
primitive types, the current item for the iteration is automatically wrapped with
its standard wrapper class (e.g. | nt eger fori nt, Fl oat for fl oat, etc.)

Elements are processed in their indexing order.
Implementation of j ava. uti | . Col | ecti on.

An |t erator object is obtained from the collection via the i t er at or () method,
and the items of the collection are processed in the order returned by that
It erator object.

Implementation of j ava. util .l terator.

Items of the collection are processed in the order returned by the | t er at or
object.

Implementation of j ava. uti | . Enunerati on.

Items of the collection are processed in the order returned by the Enuner ati on
object.

Implementation of j ava. util . Map
The object exposed via the var attribute is of type Map. Entry.

A Set view of the mappings is obtained from the Map via the ent rySet ()
method, from which an | t er at or object is obtained via the i t er at or ()
method. The items of the collection are processed in the order returned by that
It erat or object.

String

The string represents a list of comma separated values, where the comma
character is the token delimiter. Tokens are processed in their sequential order in
the string.

JSTL 1.1 « November 2003

6.3

<c:forTokens>

Iterates over tokens, separated by the supplied delimiters.

Syntax

<c: forTokens itens="stri ngxf Tokens" delinms="delimters"
[var="var Nane"]
[var St at us="var St at usNane"]
[begi n="begi n"] [end="end"] [step="step"]>

body cont ent
</ c: forTokens>

Body Content

JSP. As long as there are items to iterate over, the body content is processed by the
JSP container and written to the current JspWi ter.

Attributes
Name Dynamic Type Description
Name of the exported scoped variable for the
var false String current item of the iteration. This scoped
variable has nested visibility.
itens true String String of tokens to iterate over.
deli s true Strin The set of delimiters (the characters that
g separate the tokens in the string).
Name of the exported scoped variable for the
status of the iteration. Object exported is of
var St at us false String _type . .
javax.servlet.jsp.jstl.core. LoopTag
St at us. This scoped variable has nested
visibility.
bedi n true i nt Iteration begins at the token located at the
9 specified index. First token has index O.
. Iteration ends at the token located at the
end true i nt e . .
specified index (inclusive).
. Iteration will only process every st ep tokens
step true hnt of the string, starting with the first one.

Chapter 6 Iterator Actions 45

46

Constraints

= If specified, begi n must be >= 0.
= If end is specified and it is less than begi n, the loop is simply not executed.
= If specified, st ep must be >=1

Null & Error Handling

=« Ifitens isnull, itis treated as an empty collection, i.e., no iteration is performed.
=« Ifdelinsisnullitens istreated as a single monolithic token. Thus, when
del i ms is null, <c:forTokens> iterates exactly zero (if i t ens is also null) or one
time.

Description

The tokens of the string are retrieved using an instance of
java.util.StringTokeni zer with arguments it ens (the string to be tokenized)
and del i ms (the delimiters).

Delimiter characters separate tokens. A token is a maximal sequence of consecutive
characters that are not delimiters.

JSTL 1.1 « November 2003

CHAPTER 7

URL Related Actions

core tag library

Linking, importing, and redirecting to URL resources are features often needed in
JSP pages. Since dealing with URLs can often be tricky, JSTL offers a comprehensive
suite of URL-related actions to simplify these tasks.

7.1

Hypertext Links

By using the HTML <A> element, a page author can set a hypertext link as follows:
Register

If the link refers to a local resource and session tracking is enabled, it is necessary to
rewrite the URL so session tracking can be used as a fallback, should cookies be
disabled at the client.

Morevoer, if query string parameters are added to the URL, it is important that they
be properly URL encoded. URL encoding refers to the process of encoding special
characters in a string, according to the rules defined in RFC 2396. For example, a
space must be encoded in a URL string as a '+"

htt p://acme. conl app/ choose?count r y=Dom ni can+Republ i c

47

As shown in the following example, the combination of the <c:url> and <c:param>
actions takes care of all issues related to URL rewriting and encoding: <c:url>
rewrites a URL if necessary, and <c:param> transparently encodes query string
parameters (both name and value).

<c:url value="http://acne.conl exec/register"” var="nyUl">
<c: param nane="nanme" val ue="${param nane}"/>
<c: param nanme="country" val ue="${param country}"/>
</fc:url>
<a href="<c:out value="${myUrl}"/>" >Regi ster

Another important feature of <c:url> is that it transparently prepends the context
path to context-relative URLs. Assuming a context path of "/foo", the following
example

<c:url value="/ads/l|ogo.htm"/>

yields the URL / f oo/ ads/ | ogo. ht m .

7.2 Importing Resources

There is a wide variety of resources that a page author might be interested in
including and/or processing within a JSP page. For instance, the example below
shows how the content of the README file at the FTP site of acme.com could be
included within the page.

<c:inmport url="ftp://ftp.acne.conf READVE"/ >

In the JSP specification, a <jsp:include> action provides for the inclusion of static
and dynamic resources located in the same context as the current page. This is a very
convenient feature that is widely used by page authors.

However, <jsp:include> falls short in flexibility when page authors need to get
access to resources that reside outside of the web application. In many situations,
page authors have the need to import the content of Internet resources specified via
an absolute URL. Moreover, as sites grow in size, they may have to be implemented
as a set of web applications where importing resources across web applications is a
requirement.

48 JSTL 1.1 « November 2003

7.2.1

1.2.2

<jsp:include> also falls short in efficiency when the content of the imported resource
is used as the source for a companion process/transformation action, because
unnecessary buffering occurs. In the example below, the <acme:transform> action
uses the content of the included resource as the input of its transformation.
<jsp:include> reads the content of the response, writes it to the body content of the
enclosing <acme:transform>, which then re-reads the exact same content. It would
be more efficient if <acme:transform> could access the input source directly and
avoid the buffering involved in the body content of <acme:transform>.

<acne: t ransf or ne
<j sp:include page="/exec/ enpl oyeesList”/>
</ acne: transf ornp

The main motivation behind <c:import> is to address these shortcomings by
providing a simple, straightforward mechanism to access resources that can be
specified via a URL. If accessing a resource requires specifying more arguments,
then a protocol specific action (e.g. an <http> action) should be used for that
purpose. JSTL does not currently address these protocol-specific elements but may
do so in future releases.

URL

The ur | attribute is used to specify the URL of the resource to import. It can either
be an absolute URL (i.e. one that starts with a protocol followed by a colon), a
relative URL used to access a resource within the same context, or a relative URL
used to access a resource within a foreign context. The three different types of URL
are shown in the sample code below.

<% - inport a resource with an absolute URL --%
<c:inmport url="http://acme.com exec/ cust oners?country=Japan/ >

<% - inport a resource with a relative URL - sanme context --%
<c:inport url="/copyright.htm”/>

<% - inport a resource with arelative URL - foreign context --%
<c:inmport url="/logo.htm” context="/nmaster”/>

Exporting an object: String or Reader

By default, the content of an imported resource is included inline into the JSP page.

Chapter 7 URL Related Actions 49

7.2.3

1.2.4

It is also possible to make the content of the resource available in two different ways:
as a St ri ng object (attribute var), or as a Reader object (attribute var Reader).
Process or Transform tags can then access the resource's content through that
exported object as shown in the following example.

<% - Export the content of the URL resource as a String --%

<c:inmport url="http://acne.com exec/ custoners?country=USA"
var ="cust oners"/ >

<acne:notify in="${custoners}”/>

<% - Export the content of the URL resource as a Reader --%
<c:inport url="http://acme. conl exec/ cust oner s?count r y=USA"
var Reader =" cust oners" >
<acne: notify in="${custoners}”/>
</c:inport>

Exporting the resource as a St ri ng object caches its content and makes it reusable.

If the imported content is large, some performance benefits may be achieved by
exporting it as a Reader object since the content can be accessed directly without
any buffering. However, the performance benefits are not guaranteed since the
reader’s support is implementation dependent. It is also important to note that the
var Reader scoped variable has nested visibility; it can only be accessed within the
body content of <c:import>.

URL Encoding

Just as with <c:url>, <c:param> can be nested within <c:import> to encode query
string parameters.

Networking Properties

If the web container executes behind a firewall, some absolute URL resources may
be inaccessible when using <c:import>. To provide access to these resources, the
JVM of the container should be started with the proper networking properties (e.g.
pr oxyHost , pr oxyPort). More details can be found in the Java 2 SDK, Standard
Edition Documentation (Networking Features — Networking Properties).

50 JSTL 1.1 « November 2003

7.3 HTTP Redirect

<c:redirect> completes the arsenal of URL related actions to support an HTTP
redirect to a specific URL. For example:

<c:redirect url="http://acme.conlregister"/>

Chapter 7 URL Related Actions 51

7.4 <c:import>

Imports the content of a URL-based resource.

Syntax

Syntax 1: Resource content inlined or exported as a String object
<c:inport url="url” [context="context”]
[var="var Nane”] [scope="{page|request|session|application}”]
[char Encodi ng="char Encodi ng”] >
opti onal body content for <c:paran> subtags
</c:inport>

Syntax 2: Resource content exported as a Reader object
<c:inmport url="url” [context="context”]
var Reader =" var Reader Nane”
[char Encodi ng="char Encodi ng”] >
body content where varReader is consumed by another action
</c:inport>

Body Content

JSP. The body content is processed by the JSP container and the result is written to
the current JspWi ter.

Attributes
Name Dynamic Type Description
url true String The URL of the resource to import.
Name of the context when accessing a relative
cont ext true String URL resource that belongs to a foreign

context.

Name of the exported scoped variable for the
var false String resource’s content. The type of the scoped
variable is Stri ng.

52 JSTL 1.1 » November 2003

Name Dynamic Type Description

scope false String Scope for var.

Character encoding of the content at the input

char Encodi ng true String
resource.

Name of the exported scoped variable for the
var Reader false String resource’s content. The type of the scoped
variable is Reader.

Null & Error Handling

If url is null, empty, or invalid, a JspExcept i on is thrown.

If char Encodi ng is null or empty, it is considered missing.

For internal resources:

a) If a Request Di spat cher cannot be found for the resource, throw a
JspExcept i on with the resource path included in the message.

b) Otherwise, if the Request Di spat cher. i ncl ude() method throws an
| OExcepti on or Runt i meExcepti on, throw a JspExcept i on with the
caught exception as the root cause.

¢) Otherwise, if the Request Di spat cher. i ncl ude() method throws a
Ser vl et Excepti on, look for a root cause.

« If there's a root cause, throw a JspExcept i on with the root cause message
included in the message and the original root cause as the JspExcepti on
root cause.

» Otherwise, same as b).

d) Otherwise, if the resource invoked through Request Di spat cher. i ncl ude()
method sets a response status code other than 2xx (i.e. 200-299, the range of
success codes in the HTTP response codes), throw a JspExcept i on with the
path and status code in the message.

For external resources

« If the URLConnect i on class throws an | OExcepti on or a
Runt i meExcepti on, throw a JspExcept i on with the message from the
original exception included in the message and the original exception as the
root cause.

« Foran Htt pURLConnect i on, if the response status code is other than 2xx (i.e.
200-299, the range of success codes in the HTTP response codes), throw a
JspExcepti on with the path and status code in the message.

Description

Using syntax 1, the content of the resource is by default written to the current
JspWi ter. If var is specified, the content of the resource is instead exposed as a

St ri ng object.

Chapter 7

URL Related Actions

53

54

Using syntax 2, the content of the resource is exported as a Reader object. The use
of the var Reader attribute comes with some restrictions.

It is the responsibility of the <c:import> tag handler to ensure that if it exports a
Reader, this Reader is properly closed by the time the end of the page is reached’.
Because of this requirement, JSTL defines the exported Reader as having nested
visibility: it may not currently be accessed after the end-tag for the <c:import>
action?. Implementations that use JSP 1.2 tag-extension APl will likely need to
implement Tr yCat chFi nal | y with their <c:import> tag handlers and close the
exported Reader in doFi nal 1 y().

It is also illegal to use nested <c:param> tags with syntax 2. Since the exposed
Reader must be immediately available to the action's body, the connection to the
resource must be established within the start element of the action. It is therefore
impossible for nested <c:param> actions to modify the URL of the resource to be
accessed, thus their illegality with syntax 2. In such a situation, <c:url> may be used
to build a URL with query string parameters. <c:import> will remove any session id
information if necessary (see Section 7.5).

Character Encoding

<c:import> exposes a St ri ng or Reader object, both of which are sequences of text
characters. It is possible to specify the character encoding of the input resource via
the char Encodi ng attribute. The values supported for char Encodi ng are the same
as the ones supported by the constructor of the Java class | nput St r eanrReader.

If the character encoding is not specified, the following rules apply:

= If URLConnect i on. get Cont ent Type() has a non-null result, the character set
is retrieved from URLConnect i on. get Cont ent Type() by parsing this
method's result according to RFC 2045 (section 5.1).

= If this method's result does not include a character set, or if the character set
causes | nput St r eanReader (I nput Stream in, String charsetName) to
throw an Unsuppor t edEncodi ngExcept i on, then use 1SO-8859-1 (which is the
default value of char set for the cont ent Type attribute of the JSP page
directive).

1. If the responsibility was left to the consumer tag, this could lead to resource leaks (e.g. connection left open,
memory space for buffers) until garbage collection is activated. This is because a consumer tag might not close
the Reader, or because the page author might remove the consumer tag while leaving inadvertantly the
<c:import> tag in the page.

2. Thisrestriction could eventually be lifted when the JSP spec supports the notion of page events that actions
could register to. On a pageExi t event, an <c:import>tag would then simply release its resources if it had
not already been done, removing the requirement for nested visibility.

JSTL 1.1 « November 2003

Note that the char Encodi ng attribute should normally only be required when
accessing absolute URL resources where the protocol is not HTTP, and where the
encoding is not 1SO-8859-1.

Also, when dealing with relative URLs and the HTTP protocol, if the target resource
declares a content encoding but proceeds to write a character invalid in that
encoding, the treatment of that character is undefined.

Relative and Absolute URLs

The exact semantics of the <c:import> tag depends on what type of URL is being
accessed.

Relative URL — same context

This is processed in the exact same way as the include action of the JSP specification
(<jsp:include>). The resource belongs to the same web application as the including
page and it is specified as a relative URL.

As specified in the JSP specification, a relative URL may either be a context-relative
path, or a page-relative path. A context-relative path is a path that starts with a "/". It
is to be interpreted as relative to the application to which the JSP page belongs. A
page-relative path is a path that does not start with a "/". It is to be interpreted as
relative to the current JSP page, as defined by the rules of inclusion of the
<jsp:include> action in the JSP specification.

The semantics of importing a resource specified with a relative URL in the same
context are the same as an include performed by a Request Di spat cher as defined
in the Servlet specification. This means that the whole environment of the importing
page is available to the target resource (including request and session attributes, as
well as request parameters of the importing page).

Relative URL — foreign context

The resource belongs to a foreign context (web application) hosted under the same
container as the importing page. The context name for the resource is specified via
attribute cont ext .

The relative URL must be context-relative (i.e. must start with a "/") since the
including page does not belong to the same context. Similarly, the context name
must also start with a "/".

The semantics of importing a resource specified with a relative URL in a foreign
context are the same as an include performed by a Request Di spat cher on a
foreign context as defined in the Servlet specification. This means that only the
request environment of the importing page is available to the target resource.

Chapter 7 URL Related Actions 55

56

It is important to note that importing resources in foreign contexts may not work in
all containers. A security conscious environment may not allow access to foreign
contexts. As a workaround, a foreign context resource can also be accessed using an
absolute URL. However, it is more efficient to use a relative URL because the
resource is then accessed using Request Di spat cher defined by the Servlet API.

Relative URL — query parameter aggregation rules

The query parameter aggregation rules work the same way they do with
<jsp:include>; the original parameters are augmented with the new parameters, with
new values taking precedence over existing values when applicable. The scope of
the new parameters is the import call; the new parameters (and values) will not
apply after the import. The behavior is therefore the same as the one defined for the
i ncl ude() method of Request Di spat cher in the Servlet specification.

Absolute URL

Absolute URLs are retrieved as defined by the j ava. net. URL and

j ava. net. URLConnect i on classes. The <c:import> action therefore supports at a
minimum the protocols offered in the J2SE 1.2 platform for absolute URLs. More
protocols can be available to a web application, but this will depend on the the class
libraries made available to the web application by the platform the container runs
on.

When using an absolute URL to import a resource, none of the current execution
environment (e.g. request and session attributes) is made available to the target
resource, even if that absolute URL resolves to the same host and context path.
Therefore, the request parameters of the importing page are not propagated to the
target absolute URL.

When importing an external resource using the HTTP protocol, <c:import> behaves
according to the semantics of a GET request sent via the
j ava. net . Ht t pURLConnect i on class, with set Fol | owRedi r ect s set to true.

JSTL 1.1 « November 2003

7.5

<c:url>

Builds a URL with the proper rewriting rules applied.

Syntax

Syntax 1: Without body content

<c:url value="val ue” [context="context"]
[var="var Name”] [scope="{page|request|session|application}”]/>

Syntax 2: With body content to specify query string parameters
<c:url value="val ue” [context="context”]
[var="var Nane”] [scope="{page|request|session|application}”]>
<c: par an® subt ags
</c:iurl>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes
Name | Dynamic Type Description
val ue true String URL to be processed.
cont ext true String Name of the context when speglfylng a relative URL
resource that belongs to a foreign context.
Name of the exported scoped variable for the
var false String processed url. The type of the scoped variable is
String.
scope false String Scope for var.
Description

<c:url> processes a URL and rewrites it if necessary. Only relative URLs are
rewritten. Absolute URLs are not rewritten to prevent situations where an external
URL could be rewritten and expose the session ID. A consequence is that if a page
author wants session tracking, only relative URLs must be used with <c:url> to link
to local resources.

Chapter 7 URL Related Actions 57

58

The rewriting must be performed by calling method encodeURL() of the Servlet
API.

If the URL contains characters that should be encoded (e.g. space), it is the user's
responsibility to encode them.

The URL must be either an absolute URL starting with a scheme (e.g. "http://
server/context/page.jsp") or a relative URL as defined by JSP 1.2 in JSP.2.2.1
"Relative URL Specification". As a consequence, an implementation must prepend
the context path to a URL that starts with a slash (e.g. "/page2.jsp") so that such
URLSs can be properly interpreted by a client browser.

Specifying a URL in a foreign context is possible through the cont ext attribute. The
URL specified must must start with a / (since this is a context-relative URL). The
context name must also start with a / (since this is a standard way to identify a
context).

Because the URL built by this action may include session information as a path
parameter, it may fail if used with Request Di spat cher of the Servlet API. The
consumer of the rewritten URL should therefore remove the session ID information
prior to calling Request Di spat cher. This situation is properly handled in
<c:import>.

By default, the result of the URL processing is written to the current JspWiter. It
is also possible to export the result as a JSP scoped variable defined via the var and
scope attributes.

<c:param> subtags can also be specified within the body of <c:url> for adding to the
URL query string parameters, which will be properly encoded if necessary.

JSTL 1.1 « November 2003

7.6

<c:.redirect>

Sends an HTTP redirect to the client.

Syntax

Syntax 1: Without body content
<c:redirect url="value” [context="context”]/>

Syntax 2: With body content to specify query string parameters

<c:redirect url="value” [context="context”"]/>
<c: par ant subt ags

</c:redirect>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes
Name Dyn Type Description
url true String The URL of the resource to redirect to.
. Name of the context when redirecting to a relative URL
cont ext true String .
resource that belongs to a foreign context.
Description

This action sends an HTTP redirect response to the client and aborts the processing
of the page by returning SKI P_PACE from doEndTag() .

The URL must be either an absolute URL starting with a scheme (e.g. "http://
server/context/page.jsp") or a relative URL as defined by JSP 1.2 in JSP.2.2.1
"Relative URL Specification". As a consequence, an implementation must prepend
the context path to a URL that starts with a slash (e.g. "/page2.jsp") if the behavior is
implemented using the Ht t pSer vl et Response. sendRedi r ect () method.

Redirecting to a resource in a foreign context is possible through the cont ext
attribute. The URL specified must must start with a "/" (since this is a context-
relative URL). The context name must also start with a "/" (since this is a standard
way to identify a context).

Chapter 7 URL Related Actions 59

<c:redirect> follows the same rewriting rules as defined for <c:url>.

60 JSTL 1.1 « November 2003

7.7

<C:param=

Adds request parameters to a URL. Nested action of <c:import>, <c:url>,
<c:redirect>.

Syntax

Syntax 1: Parameter value specified in attribute “value”
<c: param name="nane” val ue="val ue”/>

Syntax 2: Parameter value specified in the body content
<c: par am name="name” >

par anet er val ue
</ c: paranmp

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes
Name Dynamic Type Description
name true String Name of the query string parameter.
val ue true String Value of the parameter.

Null & Error Handling

= If name is null or empty, no action is performed. It is not an error.
= If val ue is null, it is processed as an empty value.

Description

Nested action of <c:import>, <c:url>, <c:redirect> to add request parameters to a
URL. <c:param> also URL encodes both nane and val ue.

Chapter 7 URL Related Actions

61

One might argue that this is redundant given that a URL can be constructed to
directly specify the query string parameters. For example:

<c:inport url="/exec/dolt”>
<c: param nane="acti on” val ue="register”/>
</c:inport>

is the same as:

<c:inmport url="/exec/dolt?action=register”/>

It is indeed redundant, but is consistent with <jsp:include>, which supports nested
<jsp:param> sub-elements. Moreover, it has been designed such that the attributes
nane and val ue are automatically URL encoded.

62 JSTL 1.1 » November 2003

CHAPTER 8

Internationalization (i18n) Actions
118n-capable formatting tag library

With the explosion of application development based on web technologies, and the
deployment of such applications on the Internet, applications must be able to adapt
to the languages and formatting conventions of their clients. This means that page
authors must be able to tailor page content according to the client’s language and
cultural formatting conventions. For example, the number 345987.246 should be
formatted as 345 987,246 for France, 345.987,246 for Germany, and 345,987.246 for the
u.s.

The process of designing an application (or page content) so that it can be adapted to
various languages and regions without requiring any engineering changes is known
as internationalization, or i18n for short. Once a web application has been
internationalized, it can be adapted for a number of regions or languages by adding
locale-specific components and text. This process is known as localization.

There are two approaches to internationalizing a web application:

= Provide a version of the JSP pages in each of the target locales and have a
controller servlet dispatch the request to the appropriate page (depending on the
requested locale). This approach is useful if large amounts of data on a page or an
entire web application need to be internationalized.

= Isolate any locale-sensitive data on a page (such as error messages, string literals,
or button labels) into resource bundles, and access the data via i18n actions, so
that the corresponding translated message is fetched automatically and inserted
into the page.

The JSTL i18n-capable formatting actions support either approach: They assist page
authors with creating internationalized page content that can be localized into any
locale available in the JSP container (this addresses the second approach), and allow
various data elements such as numbers, currencies, dates and times to be formatted
and parsed in a locale-sensitive or customized manner (this may be used in either
approach).

63

JSTL’s i18n actions are covered in this chapter. The formatting actions are covered in
Chapter 9.

8.1

Overview

There are three key concepts associated with internationalization: locale, resource
bundle, and basename.

A locale represents a specific geographical, political, or cultural region. A locale is
identified by a language code, along with an optional country code?.

= Language code

The language code is the lower-case two-letter code as defined by 1SO-639 (e.g.
“ca” for Catalan, “zh” for Chinese). The full list of these codes can be found at a
number of sites, such as:
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

= Country code

The country code is the upper-case two-letter code as defined by 1ISO-3166 (e.g.
“IT” for Italy, “CR” for Costa Rica). The full list of these codes can be found at a
number of sites, such as:
http://www.chemie.fu-berlin.de/diverse/doc/1SO_3166.html.

Note that the semantics of locales in JSTL are the same as the ones defined by the
class j ava. util. Local e. A consequence of this is that, as of J2SE 1.4, new
language codes defined in ISO 639 (e.g. he, yi , i d) will be returned as the old codes
(e.g.iwji,in). See the documentation of the j ava. uti | . Local e class for more
details.

A resource bundle contains locale-specific objects. Each message in a resource bundle
is associated with a key. Since the set of messages contained in a resource bundle can
be localized for many locales, the resource bundles that translate the same set of
messages are identified by the same basename. A specific resource bundle is therefore
uniquely identified by combining its basename with a locale.

For instance, a web application could define the registration resource bundles with

basename Regi st rati on to contain the messages associated with the registration

portion of the application. Assuming that French and English are the only languages
supported by the application, there will be two resource bundles:

Regi strati on_fr (French language) and Regi strati on_en (English language).
Depending on the locale associated with the client request, the key “greeting” could
be mapped to the message “Bonjour” (French) or “Hello” (English).

1. A variant code may also be specified, although rarely used.

64 JSTL 1.1 » November 2003

8.1.1

<fmt:message>

It is possible to internationalize the JSP pages of a web application simply by using
the <fmt:message> action as shown below:

<fnt: nessage key="greeting"/>

In this case, <fmt:message> leverages the default i18n localization context, making it
extremely simple for a page author to internationalize JSP pages.

<fmt:message> also supports compound messages, i.e. messages that contain one or
more variables. Parameter values for these variables may be supplied via one or
more <fmt:param> subtags (one for each parameter value). This procedure is
referred to as parametric replacement.

<fnt: nessage key="at hl et esRegi st ered">
<fmt: paran
<fnt:format Nunber val ue="${athl etesCount}”/>
</fmt:paran>
</ fm:message>

Depending on the locale, this example could print the following messages:

french: 11 y a 10 582 athletes enregistres.
english: There are 10,582 athletes registered.

8.2

118n Localization Context

118n actions use an i18n localization context to localize their data. An i18n
localization context contains two pieces of information: a resource bundle and the
locale for which the resource bundle was found.

An i18n action determine its i18n localization context in one of several ways, which
are described in order of precedence:
= <fmt:message> bundl e attribute

If attribute bundl e is specified in <fmt:message>, the i18n localization context
associated with it is used for localization.

= <fmt:bundle> action

Chapter 8 Internationalization (i18n) Actions 65

8.2.1

If <fmt:message> actions are nested inside a <fmt:bundle> action, the i18n
localization context of the enclosing <fmt:bundle> action is used for localization.
The <fmt:bundle> action determines the resource bundle of its i18n localization
context according to the resource bundle determination algorithm in Section 8.3,
using the basename attribute as the resource bundle basename.

118n default localization context

The i18n localization context whose resource bundle is to be used for localization
is specified via the j avax. servl et.jsp.jstl.fnt.localizationContext
configuration setting (see Section 8.11.3). If the configuration setting is of type
Local i zati onCont ext (see Chapter 16 “Java APIs”) its resource bundle
component is used for localization. Otherwise, the configuration setting is of type
Stri ng, and the action establishes its own i18n localization context whose
resource bundle component is determined according to the resource bundle
determination algorithm in Section 8.3, using the configuration setting as the
resource bundle basename.

The example below shows how the various localization contexts can be established
to define the resource bundle used for localization.

<% - Use configuration setting --%
<fmt:nessage key="Wel cone" />

<fnt:setBundl e basename="Errors" var="errorBundl e" />
<f nt: bundl e basenane="G eeti ngs">
<% - Localization context established by
parent <fnt:bundle> tag --%
<fnt:nessage key="Wel cone" />
<% - Localization context established by attribute bundle --%
<fnt: message key="WongPassword" bundl e="${errorBundle}" />
</ fm: bundl e>

Preferred Locales

If the resource bundle of an i18n localization context needs to be determined, it is
retrieved from the web application’s resources according to the algorithm described
in section Section 8.3. This algorithm requires two pieces of information: the
basename of the resource bundle (as described in the previous section) and the
preferred locales.

The method for setting the preferred locales is characterized as either application-
based or browser-based.

66 JSTL 1.1 « November 2003

Application-based locale setting has priority over browser-based locale setting. In this
mode, the locale is set via the j avax. servlet.jsp.jstl.fnt.locale
configuration setting (see Section 8.11.1). Setting the locale this way is useful in
situations where an application lets its users pick their preferred locale and then sets
the scoped variable accordingly. This may also be useful in the case where a client’s
preferred locale is retrieved from a database and installed for the page using the
<fmt:setLocale> action.

The <fmt:setLocale> action may be used to set the
javax.servlet.jsp.jstl.fnt.local e configuration variable as follows:

<fnt:setlLocal e val ue="en_US" />

In the browser-based locale setting, the client determines via its browser settings
which locale(s) should be used by the web application. The action retrieves the
client’s locale preferences by calling Ser vl et Request . get Local es() on the
incoming request. This returns a list of the locales (in order of preference) that the
client wants to use.

Whether application- or browser-based locale setting is used, an ordered list of
preferred locales is fed into the algorithm described in section Section 8.3 to
determine the resource bundle for an i18n localization context.

Chapter 8 Internationalization (i18n) Actions 67

8.3

8.3.1

Determinining the Resource Bundle for
an i118n Localization Context

Given a basename and an ordered set of preferred locales, the resource bundle for an
i18n localization context is determined according to the algorithm described in this
section.

Tthis algorithm is also exposed as a general convenience method in the

Local eSupport class (see Chapter 16 “Java APIs”) so that it may be used by any
tag handler implementation that needs to produce localized messages. For example,
this is useful for exception messages that are intended directly for user consumption
on an error page.

Resource Bundle Lookup

Localization in JSTL is based on the same mechanisms offered in the J2SE platform.
Resource bundles contain locale-specific objects, and when an i18n action requires a
locale-specific resource, it simply loads it from the appropriate resource bundle.

The algorithm of Section 8.3.2 describes how the proper resource bundle is
determined. This algorithm calls for a resource bundle lookup, where an attempt is
made at fetching a resource bundle associated with a specific basename and locale.

JSTL leverages the semantics of the j ava. uti | . Resour ceBundl e method
getBundl e(String basenane, java.util.Locale |ocale)
for resource bundle lookup, with one important modification.

As stated in the documentation for Resour ceBundl e, a resource bundle lookup
searches for classes and properties files with various suffixes on the basis of:

1. The specified locale
2. The current default locale as returned by Local e. get Def aul t ()
3. The root resource bundle (basename)

In JSTL, the search is limited to the first level; i.e. the specified locale. Steps 2 and 3
are removed so that other locales may be considered before applying the JSTL
fallback mechanism described in Section 8.3.2. Only if no fallback mechanism exists,
or the fallback mechanism fails to determine a resource bundle, is the root resource
bundle considered.

Resource bundles are therefore searched in the following order:

68 JSTL 1.1 « November 2003

8.3.2

basename +"_" + language + "_" + country + "_" + variant
basename + "_" + language + "_" + country
basename + " _" + language

Resource Bundle Determination Algorithm

Notes:

= When there are multiple preferred locales, they are processed in the order they
were returned by Ser vl et Request . get Local es().

= The algorithm stops as soon as a resource bundle has been selected for the
localization context.

Step 1: Find a match within the ordered set of preferred locales

A resource bundle lookup (see Section 8.3.1) is performed for each one of the
preferred locales until a match is found. If a match is found, the locale that led to the
match and the matched resource bundle are stored in the i18n localization context.

Step 2: Find a match with the fallback locale

A resource bundle lookup (see Section 8.3.1) is performed for the fallback locale
specified in the j avax. servl et.jsp.jstl.fnt.fall backLocal e configuration
setting. If a match is found, the fallback locale and the matched resource bundle are
stored in the i18n localization context.

If no match is found following the above two steps, an attempt is made to load the
root resource bundle with the given basename. If such a resource bundle exists, it is
used as the resource bundle of an i18n localization context that does not have any
locale. Otherwise, the established i18n localization context contains neither a
resource bundle nor a locale. It is then up to the i18n action relying on this i18n
localization context for the localization of its data to take a proper corrective action.

It is important to note that this algorithm gives higher priority to a language match
over an exact match that would have occurred further down the list of preferred
locales. For example, if the browser-based locale settings are “en” and “fr_CA”, with
resource bundles “Messages_en” and “Messages_fr_CA”, the Messages_en bundle
will be selected as the resource bundle for the localization context.

The definition of a fallback locale along with its associated resource bundles is the
only portable way a web application can ensure the proper localization of all its
internationalized pages. The algorithm of this section never considers the default
locale associated with the Java runtime of the container because this would result in
a non-portable behavior.

Chapter 8 Internationalization (i18n) Actions 69

8.3.3

The behavior is implementation-specific if the set of available resource bundles
changes during execution of the page. Implementations may thus cache whatever
information they deem necessary to improve the performance of the algorithm
presented in this section.

Examples

The following examples demonstrate how the resource bundle is determined for an
i18n localization context.

Example 1

Settings

Basename: Resour ces

Ordered preferred locales: en_GB, fr_CA

Fallback locale: fr _CA

Resource bundles: Resour ces_en, Resources_fr_CA

Algorithm Trace
Step 1: Find a match within the ordered set of preferred locales
en_GB match with Resour ces_en

Result
Resource bundle selected: Resour ces_en
Locale: en_GB

Example 2

Settings
Basename: Resour ces

Ordered preferred locales: de, fr
Fallback locale: en
Resource bundles: Resour ces_en

Algorithm Trace
Step 1: Find a match within the ordered set of preferred locales
de no match

fr no match
Step 2: Find a match with the fallback locale
en exact match with Resour ces_en
Result
Resource bundle selected: Resour ces_en
Locale: en

70 JSTL 1.1 » November 2003

Example 3

Settings
Basename: Resour ces

Ordered preferred locales: ja, en_GB, en_US, en_CA fr
Fallback locale: en
Resource bundles: Resour ces_en, Resources_fr, Resources_en_US

Algorithm Trace

Step 1: Find a match within the ordered set of preferred locales
ja no match
en_GB match with Resour ces_en

Result
Resource bundle selected: Resour ces_en
Locale: en_GB

Example 4

Settings
Basename: Resour ces

Ordered preferred locales: fr, sv
Fallback locale: en
Resource bundles: Resources_fr_CA, Resources_sv, Resources_en

Algorithm Trace
Step 1: Find a match within the ordered set of preferred locales
fr no match

sV match with Resour ces_sv
Result
Resource bundle selected: Resour ces_sv
Locale: sv

This example shows that whenever possible, a resource bundle for a specific
language and country (Resour ces_f r _CA) should be backed by a resource bundle
covering just the language (Resour ces_f r). If the country-specific differences of a
language are too significant for there to be a language-only resource bundle, it is
expected that clients will specify both a language and a country as their preferred
language, in which case an exact resource bundle match will be found.

Chapter 8 Internationalization (i18n) Actions 71

8.4

Response Encoding

Any i18n action that establishes a localization context is responsible for setting the
response’s locale of its page, unless the localization context that was established
does not have any locale. This is done by calling method

Ser vl et Response. set Local e() with the locale of the localization context.
Unless a response character encoding has been explicitly defined by other JSP
elements (or by direct calls to the Servlet API), calling set Local e() also sets the
character encoding for the response (see the JSP and Servlet specifications for
details).

This assumes that the response is buffered with a big enough buffer size, since
Ser vl et Response. set Local e() must be called before

Servl et Response. get Wi ter () in order for the specified locale to affect the
construction of the writer.

More specifically, the response’s set Local e() method is always called by the
<fmt:setLocale> action (see Section 8.5). In addition, it is called by the following
actions:

= Any <fmt:bundle> (see Section 8.6) and <fmt:setBundle> (see Section 8.7) action.

= Any <fmt:message> action that establishes an i18n localization context

= Any formatting action that establishes a formatting locale on its own (see
Section 9.3).

After an action has called Ser vl et Response. set Local e(), if a session exists and
has not been invalidated, it must determine the character encoding associated with
the response locale (by calling Ser vl et Response. get Char act er Encodi ng())
and store it in the scoped variable
javax.servlet.jsp.jstl.fnt.request.charset in session scope. This
attribute may be used by the <fmt:requestEncoding> action (see Section 8.10) in a
page invoked by a form included in the response to set the request charset to the
same as the response charset. This makes it possible for the container to decode the
form parameter values properly, since browsers typically encode form field values
using the response’s charset.

The rules related to the setting of an HTTP response character encoding, Content-
Language header, and Content-Type header are clearly defined in the Servlet
specification. To avoid any ambiguity, the JSTL and JSP specifications define
behavior related to a response's locale and character encoding exclusively in terms of
Servlet API calls.

72 JSTL 1.1 » November 2003

It is therefore important to note that, as defined in the Servlet spec, a call to

Servl et Response. set Local e() modifies the character encoding of the response
only if it has not already been set explicitely by calls to

Ser vl et Response. set Cont ent Type() (with CHARSET specified) or

Ser vl et Response. set Char act er Encodi ng() .

Page authors should consult the JSP specification to understand how page directives
related to locale and character encoding setting translate into Servlet API calls, and
how they impact the final response settings.

Chapter 8 Internationalization (i18n) Actions 73

8.5

<fmt:setLocale>

Stores the specified locale in the j avax. servlet.jsp.jstl.fnt.locale

configuration variable.

Syntax

<fm:setlLocal e val ue="1ocal e”
[variant="variant”]

[scope="{page| request | sessi on| application}”]/>

Body Content

Empty.
Attributes
Name | Dynamic Type Description
A String value is interpreted as the
printable representation of a locale, which
must contain a two-letter (lower-case)
. language code (as defined by 1SO-639),
String or .
val ue true ava. util . Local e and may contain a two-letter (upper-case)
Y ’ ' country code (as defined by 1SO-3166).
Language and country codes must be
separated by hyphen (’-’) or underscore
(1_1).
Vendor- or browser-specific variant.
vari ant true String See the j ava. uti | . Local e javadocs for
more information on variants.
scope false String Scope of the locale configuration variable.

Null & Error Handling

= If val ue is null or empty, use the runtime default locale.

Description

74 JSTL 1.1 » November 2003

The <fmt:setLocale> action stores the locale specified by the val ue attribute in the
javax.servlet.jsp.jstl.fnt.| ocal e configuration variable in the scope
given by the scope attribute. If val ue is of type j ava. util . Local e, vari ant is
ignored.

As a result of using this action, browser-based locale setting capabilities are

disabled. This means that if this action is used, it should be declared at the
beginning of a page, before any other i18n-capable formatting actions.

Chapter 8 Internationalization (i18n) Actions 75

8.6

<fmt:bundle>

Creates an i18n localization context to be used by its body content.

Syntax

<fnt : bundl e basenane="basenane”
[prefix="prefix"]>
body cont ent
</fm: bundl e>

Body Content

JSP. The JSP container processes the body content and then writes it to the current
JspWi ter. The action ignores the body content.

Attributes
Name Dynamic Type Description
Resource bundle base name. This is the bundle’s
fully-qualified resource name, which has the same
. form as a fully-qualified class name, that is, it uses
basenane true String .

" as the package component separator and does not
have any file type (such as ".class" or ".properties")
suffix.

. . Prefix to be prepended to the value of the message
prefix true String . ;
key of any nested <fmt:message> action.

Null & Error Handling

= If basenane is null or empty, or a resource bundle cannot be found, the nul |
resource bundle is stored in the i18n localization context.

Description

The <fmt:bundle> action creates an i18n localization context and loads its resource
bundle into that context. The name of the resource bundle is specified with the
basenan® attribute.

76 JSTL 1.1 » November 2003

The specific resource bundle that is loaded is determined according to the algorithm
presented in Section 8.3.2.

The scope of the i18n localization context is limited to the action’s body content.

The pr ef i x attribute is provided as a convenience for very long message key
names. Its value is prepended to the value of the message key of any nested
<fmt:message> actions.

For example, using the pr ef i x attribute, the key names in:

<fmt: bundl e basenane="Label s">
<fnt:nessage key="com acne. | abel s. firstNane"/>
<fnt:nessage key="com acne. | abel s. | ast Name"/ >
</fnt:bundl e>

may be abbreviated to:

<fnt: bundl e basenane="Label s" prefix="com acne. | abel s.">
<fnt:message key="firstName"/>
<fnt: message key="last Nane"/>

</fnt:bundl e>

Chapter 8 Internationalization (i18n) Actions 77

8.7 <fmt:setBundle>

Creates an i18n localization context and stores it in the scoped variable or the
javax.servlet.jsp.jstl.fnt.localizationContext configuration variable.

Syntax

<fnt : set Bundl e basenane="basenane”
[var="var Nane”]
[scope="{page| request | sessi on| application}”]/>

Body Content

Empty.
Attributes
Name Dynamic Type Description
Resource bundle base name. This is the bundle’s
fully-qualified resource name, which has the same
. form as a fully-qualified class name, that is, it uses
basenane true String v
" as the package component separator and does not
have any file type (such as ".class" or ".properties")
suffix.
Name of the exported scoped variable which stores
var false Strin the i18n localization context of type
9 javax.servlet.jsp.jstl.fnt.LocalizationC
ont ext .
. Scope of var or the localization context
scope false String . . .
configuration variable.

Null & Error Handling

= If basenane is null or empty, or a resource bundle cannot be found, the nul |
resource bundle is stored in the i18n localization context.

78 JSTL 1.1 » November 2003

Description

The <fmt:setBundle> action creates an i18n localization context and loads its
resource bundle into that context. The name of the resource bundle is specified with
the basenane attribute.

The specific resource bundle that is loaded is determined according to the algorithm
presented in Section 8.3.2.

The i18n localization context is stored in the scoped variable whose name is given by
var. If var is not specified, it is stored in the
javax.servlet.jsp.jstl.fnt.localizationContext configuration variable,
thereby making it the new default i18n localization context in the given scope.

Chapter 8 Internationalization (i18n) Actions 79

8.8 <fmt:message>

Looks up a localized message in a resource bundle.

Syntax

Syntax 1: without body content
<fnt:message key="nessageKey”
[bundl e="r esour ceBundl e”]
[var =" var Nane”]
[scope="{page| request | sessi on| application}"]/>

Syntax 2: with a body to specify message parameters
<fnt: nessage key="nessageKey”
[bundl e="resour ceBundl e”]
[var =" var Nane”]
[scope="{page| r equest | sessi on| appl i cation}”] >
<fnt: paran> subt ags
</fnt:nessage>

Syntax 3: with a body to specify key and optional message parameters
<fnt: nmessage [bundl e="resourceBundl e”]
[var =" var Nane”]
[scope="{page| r equest | sessi on| appl i cation}”]>
key
optional <fnt:paranm> subtags
</fmt:nessage>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

80 JSTL 1.1 « November 2003

Attributes

Name Dyn Type Description
key true String Message key to be looked up.
bundl e true | Local i zati onCont ext Localization context in whose resource

bundle the message key is looked up.

Name of the exported scoped variable

var false String which stores the localized message.

scope false String Scope of var.

Constraints

= If scope is specified, var must also be specified.

Null & Error Handling

= If key is null or empty, the message is processed as if undefined; that is, an error

= If the i18n localization context that this action determines does not have any
resource bundle, an error message of the form “???<key>???" is produced

Description

The <fmt:message> action looks up the localized message corresponding to the
given message key.

The message key may be specified via the key attribute or from the tag’s body
content. If this action is nested inside a <fmt:bundle> action, and the parent
<fmt:bundle> action contains a pr ef i x attribute, the specified prefix is prepended
to the message key.

<fmt:message> uses the resource bundle of the i18n localization context determined
according to Section 8.2.

If the given key is not found in the resource bundle, or the i18n localization context
does not contain any resource bundle, the result of the lookup is an error message of
the form "???7<key>???" (where <key> is the name of the undefined message key).

If the message corresponding to the given key is compound, that is, contains one or
more variables, it may be supplied with parameter values for these variables via one
or more <fmt:param> subtags (one for each parameter value). This procedure is
referred to as parametric replacement. Parametric replacement takes place in the order
of the <fmt:param> subtags.

Chapter 8 Internationalization (i18n) Actions 81

82

In the presence of one or more <fmt:param> subtags, the message is supplied to the
j ava. t ext . MessageFor mat method appl yPat t ern(), and the values of the
<fmt:param> tags are collected in an Obj ect[] and supplied to the

j ava. t ext. MessageFor mat method f or mat () . The locale of the

j ava. t ext . MessageFor mat is set to the appropriate localization context locale
before appl yPat t er n() is called. If the localization context does not have any
locale, the locale of the j ava. t ext . MessageFor mat is set to the locale returned by
the formatting locale lookup algorithm of Section 9.3, except that the available
formatting locales are given as the intersection of the number- and date- formatting
locales. If this algorithm does not yield any locale, the locale of the

j ava. t ext . MessageFor mat is set to the runtime's default locale.

If the message is compound and no <fmt:param> subtags are specified, it is left
unmodified (that is, j ava. t ext . MessageFor mat is not used).

The <fmt:message> action outputs its result to the current JspW i t er object, unless
the var attribute is specified, in which case the result is stored in the named JSP
attribute.

JSTL 1.1 « November 2003

8.9

<fmt:param>

Supplies a single parameter for parametric replacement to a containing
<fmt:message> (see Section 8.8) action.

Syntax

Syntax 1: value specified via attribute “value”
<f nt: param val ue=" messagePar aneter”/ >

Syntax 2: value specified via body content
<fnt: parane

body content
</ fnt:paranr

Body Content

JSP. The JSP container processes the body content, then the action trims it and

processes it further.

Attributes
Name | Dynamic Type Description
val ue true bj ect | Argument used for parametric replacement.

Constraints

= Must be nested inside a <fmt:message> action.

Description

The <fmt:param> action supplies a single parameter for parametric replacement to
the compound message given by its parent <fmt:message> action.

Chapter 8 Internationalization (i18n) Actions

83

Parametric replacement takes place in the order of the <fmt:param> tags. The
semantics of the replacement are defined as in the class
j ava. t ext . MessageFor mat :

the compound message given by the parent <fmt:message> action is used as the
argument to the appl yPat t er n() method of a j ava. t ext. MessageFor mat
instance, and the values of the <fmt:param> tags are collected in an Cbj ect[] and
supplied to that instance's f or mat () method.

The argument value may be specified via the val ue attribute or inline via the tag’s
body content.

84 JSTL 1.1 « November 2003

8.10

<fmt:requestEncoding>

Sets the request’s character encoding.

Syntax

<fnt:request Encodi ng [val ue="charset Nane”]/ >

Body Content

Empty.
Attributes
Name Dynamic Type Description
. Name of character encoding to be applied when
val ue true String .
decoding request parameters.
Description

The <fmt:requestEncoding> action may be used to set the request’s character
encoding, in order to be able to correctly decode request parameter values whose
encoding is different from 1SO-8859-1.

This action is needed because most browsers do not follow the HTTP specification
and fail to include a Cont ent - Type header in their requests.

More specifically, the purpose of the <fmt:requestEncoding> action is to set the
request encoding to be the same as the encoding used for the response containing
the form that invokes this page.

This action calls the set Char act er Encodi ng() method on the servlet request with
the character encoding name specified in the val ue attribute. It must be used before
any parameters are retrieved, either explicitly or through the use of an EL
expression.

If the character encoding of the request parameters is not known in advance (since
the locale and thus character encoding of the page that generated the form collecting
the parameter values was determined dynamically), the val ue attribute must not be
specified. In this case, the <fmt:requestEncoding> action first checks if there is a
charset defined in the request Cont ent - Type header. If not, it uses the character

Chapter 8 Internationalization (i18n) Actions 85

encoding from the j avax. servl et.jsp.jstl.fnt.request.charset scoped
variable which is searched in session scope. If this scoped variable is not found, the
default character encoding (1SO-8859-1) is used.

86 JSTL 1.1 « November 2003

8.11

8.11.1

Configuration Settings

This section describes the i18n-related configuration settings. Refer to Section 2.8 for
more information on how JSTL processes configuration data.

Locale

Vari abl e nane

javax.servlet.jsp.jstl.fnt.locale

Java Const ant

Conf i g. FMI_LOCALE

Type

Stringorjava.util.Locale

Set by

<fnt:setlLocal e>

<fnt:bundl e> <fnt:setBundle> <fnt:nessage>,

Used by <fnt:format Nunber>, <fnt:parseNunber>,
<fnt:formatDate>, <fnt:parseDate>

Specifies the locale to be used by the i18n-capable formatting actions, thereby
disabling browser-based locales. A St ri ng value is interpreted as defined in action
<fmt:setLocale> (see Section 8.5).

8.11.2 Fallback Locale

Vari abl e nane javax.servlet.jsp.jstl.fnt.fallbackLocal e

Confi g. FMI_FALLBACK_LOCALE

Java Const ant

Type Stringorjava.util.Locale
Set by

<fnt:bundl e>, <fnt:setBundle> <fnt:nessage>,
<fnt: for mat Nunber >, <fnt: par seNunber >,
<fnt:format Date>, <fnt:parseDate>

Used by

Specifies the fallback locale to be used by the i18n-capable formatting actions if none
of the preferred match any of the available locales. A St ri ng value is interpreted as
defined in action <fmt:setLocale> (see Section 8.5).

Chapter 8 Internationalization (i18n) Actions 87

8.11.3

88

118n Localization Context

Vari abl e nane

javax.servlet.jsp.jstl.fnt.localizationContext

Java Const ant

Confi g. FMT_LOCALI ZATI ON_CONTEXT

Tvpe Stringor
yp javax.servlet.jsp.jstl.fnt.LocalizationContext
Set by <f mt : set Bundl e>
<fnt:nmessage>, <fnt:formatNunber>,
Used by <fnt: parseNunber>, <fm:fornmatDate>,

<f nt : par seDat e>

Specifies the default i18n localization context to be used by the i18n-capable
formatting actions. A Stri ng value is interpreted as a resource bundle basename.

JSTL 1.1 « November 2003

CHAPTER 9

Formatting Actions
118n-capable formatting tag library

The JSTL formatting actions allow various data elements in a JSP page, such as
numbers, dates and times, to be formatted and parsed in a locale-sensitive or
customized manner.

9.1

9.1.1

Overview

Formatting Numbers, Currencies, and
Percentages

The <fmt:formatNumber> action allows page authors to format numbers, currencies,

and percentages according to the client’s cultural formatting conventions.

For example, the output of:

<fnt:format Nunber val ue="9876543. 21" type="currency"/>

varies with the page’s locale (given in parentheses), as follows:

SFr. 9°876'543.21 (fr_CH)
$9, 876, 543. 21 (en_US)

89

9.1.2

While the previous example uses the default formatting pattern (for currencies) of
the page’s locale, it is also possible to specify a customized formatting pattern. For
example, a pattern of ".000" will cause any numeric value formatted with it to be
represented with 3 fraction digits, adding trailing zeros if necessary, so that:

<fmt: format Nunber val ue="12.3" pattern=".000"/>

will output "12.300".

Likewise, a pattern of "#,#00.0#" specifies that any numeric value formatted with it
will be represented with a minimum of 2 integer digits, 1 fraction digit, and a
maximum of 2 fraction digits, with every 3 integer digits grouped. Applied to
"123456.7891", as in:

<fnt:format Nunber val ue="123456.7891" pattern="#, #00. 0#"/ >

the formatted output will be "123,456.79" (note that rounding is handled
automatically).

The following example formats a numeric value as a currency, stores it in a scoped
variable, parses it back in, and outputs the parsed result (which is the same as the
original numeric value):

<fnt:format Nunber val ue="123456789" type="currency" var="cur"/>
<fnt: parseNunber value="${cur}" type="currency"/>

A similar sequence of actions could have been used to retrieve a currency-formatted
value from a database, parse its numeric value, perform an arithmetic operation on
it, reformat it as a currency, and store it back to the database.

Formatting Dates and Times

The <fmt:formatDate> action allows page authors to format dates and times
according to the client’s cultural formatting conventions.

For example, assuming a current date of Oct 22, 2001 and a current time of
4: 05: 53PM the following action:

<j sp: useBean id="now' cl ass="java.util.Date" />
<fm:fornmatDate val ue="${now}” tinmeStyl e="1ong"
dat eStyl e="l ong"/ >

90 JSTL 1.1 « November 2003

will output

Cct ober 22, 2001 4:05:53 PM PDT
for the U.S. and

22 octobre 2001 16:05:53 GMVr-07:0
for the French locale.

Page authors may also specify a customized formatting style for their dates and
times. Assuming the same current date and time as in the above example, this
action:

<fnt:fornatDate val ue="${now}” pattern="dd. WM yy"/>

will output
22.10.01
for the U.S. locale.

Time information on a page may be tailored to the preferred time zone of a client.
This is useful if the server hosting the page and its clients reside in different time
zones. If time information is to be formatted or parsed in a time zone different from
that of the JSP container, the <fmt:formatDate> and <fmt:parseDate> action may be
nested inside a <fmt:timeZone> action or supplied with a t i mneZone attribute.

In the following example, the current date and time are formatted in the
“GMT+1:00” time zone:

<fnmt:tineZone val ue="Gur+1: 00" >

<fnt:formatDate val ue="${now}” type="both" dateStyle="full"
timeStyle="full"/>
</fm:tinmeZone>

9.2

Formatting Locale

A formatting action! may leverage an i18n localization context to determine its
formatting locale or establish a formatting locale on its own, by following these
steps:

1. Four formatting actions localize their data: <fmt:formatNumber>, <fmt:parseNumber>, <fmt:formatDate>,
<fmt:parseDate>.

Chapter 9 Formatting Actions 91

92

<fmt:bundle> action

If a formatting action is nested inside a <fmt:bundle> action (see Section 8.6), the
locale of the i18n localization context of the enclosing <fmt:bundle> action is used
as the formatting locale. The <fmt:bundle> action determines the resource bundle
of its i18n localization context according to the resource bundle determination
algorithm in Section 8.3, using the basename attribute as the resource bundle
basename. If the i18n localization context of the enclosing <fmt:bundle> action
does not contain any locale, go to the next step.

118n default localization context

The default i18n localization context may be specified via the
javax.servlet.jsp.jstl.fm.localizationContext configuration
setting. If such a configuration setting exists, and its value is of type

Local i zat i onCont ext, its locale is used as the formatting locale. Otherwise, if
the configuration setting is of type St ri ng, the formatting action establishes its
own i18n localization context and uses its locale as the formatting locale (in this
case, the resource bundle component of the i18n localization context is
determined according to the resource bundle determination algorithm in
Section 8.3, using the configuration setting as the resource bundle basename). If
the i18n localization context determined in this step does not contain any locale,
go to the next step.

Formatting locale lookup

The formatting action establishes a locale according to the algorithm described in
Section 9.3. This algorithm requires the preferred locales. The way the preferred
locales are set is exactly the same as with i18n actions and is described in
Section 8.2.1.

The following example shows how the various localization contexts can be
established to define the formatting locale.

<j sp: useBean id="now' class="java.util.Date" />

<% - Formatting |ocal e | ookup --%
<fnt:formatDate val ue="${now}” />

<fnt: bundl e basenane="G eeti ngs">
<% - 118n | ocalization context fromparent <fnt:bundle>tag --%
<fnt:nessage key="Wel cone" />
<fnt:formatDate val ue="${now}” />

</ fmnt:bundl e>

JSTL 1.1 « November 2003

9.3

9.3.1

9.3.2

9.3.3

Establishing a Formatting Locale

If a formatting action fails to leverage an i18n localization context for its formatting
locale — either because the formatting action has no way of referring to an i18n
localization context, or the i18n localization context does not have any locale - it
must establish the formatting locale on its own, given an ordered set of preferred
locales, according to the formatting locale lookup algorithm described in this section.

Locales Available for Formatting Actions

The algorithm described in Section 9.3.3 compares preferred locales against the set of
locales that are available for a specific formatting action.

The locales available for actions <fmt:formatNumber> and <fmt:parseNumber> are
determined by a call to j ava. t ext. Nunber For mat . get Avai | abl eLocal es() .

The locales available for <fmt:formatDate> and <fmt:parseDate> are determined by
acall toj ava. t ext. Dat eFor mat . get Avai | abl eLocal es().

Locale Lookup

The algorithm of Section 9.3.3 describes how the proper locale is determined. This
algorithm calls for a locale lookup: it attempts to find among the available locales, a
locale that matches the specified one.

The locale lookup is similar to the resource bundle lookup described in Section 8.3.1,
except that instead of trying to match a resource bundle, the locale lookup tries to
find a match in a list of available locales. A match of the specified locale against an
available locale is therefore attempted in the following order:

= Language, country, and variant are the same
= Language and country are the same
= Language is the same and the available locale does not have a country

Formatting Locale Lookup Algorithm

Notes:

= When there are multiple preferred locales, they are processed in the order they
were returned by a call to Ser vl et Request . get Local es().

Chapter 9 Formatting Actions 93

= The algorithm stops as soon as a locale has been selected for the localization
context.

Step 1: Find a match within the ordered set of preferred locales

A locale lookup (see Section 9.3.2) is performed for each one of the preferred locales
until a match is found. The first match is used as the formatting locale.

Step 2: Find a match with the fallback locale

A locale lookup (see Section 9.3.2) is performed for the fallback locale specified in
the j avax. servlet.jsp.jstl.fnt.fall backLocal e configuration setting. If a
match exists, it is used as the formatting locale.

If no match is found after the above two steps, it is up to the formatting action to
take a corrective action.

The result of the formatting locale lookup algorithm may be cached, so that
subsequent formatting actions that need to establish the formatting locale on their
own may leverage it.

9.4

Time Zone

Time information on a page may be tailored to the preferred time zone of a client.
This is useful if the server hosting the page and its clients reside in different time
zones (page authors could be advised to always use the "long"” time format which
includes the time zone, but that would still require clients to convert the formatted
time into their own time zone).

When formatting time information using the <fmt:formatDate> action (see Section
9.8), or parsing time information that does not specify a time zone using the
<fmt:parseDate> action (see Section 9.9), the time zone to use is determined as
follows and in this order:

= Use the time zone from the action's t i neZone attribute.

= |If attribute t i meZone is not specified and the action is nested inside an
<fmt:timeZone> action, use the time zone from the enclosing <fmt:timeZone>
action.

= Use the time zone given by the javax.servlet.jsp.jstl.fnt.timeZone
configuration setting.

= Use the JSP container’s time zone.

94 JSTL 1.1 » November 2003

9.5

<fmt:timeZone>

Specifies the time zone in which time information is to be formatted or parsed in its
body content.

Syntax

<fm:tinmeZone val ue="ti neZone” >
body content
</fm:tinmeZone>

Body Content

JSP. The JSP container processes the body content and then writes it to the current
JspW i t er. The action ignores the body content.

Attributes

Name | Dyn Type Description

The time zone. A St ri ng value is interpreted as
a time zone ID. This may be one of the time zone
IDs supported by the Java platform (such as
"America/Los_Angeles") or a custom time zone
ID (such as "GMT-8"). See

java. util . Ti meZone for more information on
supported time zone formats.

Stringor

val ue | true | . .)
java.util.Ti neZone

Null & Error Handling

= If val ue is null or empty, the GMT timezone is used.

Description

The <fmt:timeZone> action specifies the time zone in which to format or parse the
time information of any nested time formatting (see Section 9.8) or parsing (see
Section 9.9) actions.

If the time zone is given as a string, it is parsed using
java. util.Ti meZone. get Ti meZone().

Chapter 9 Formatting Actions 95

9.6

96

<fmt:setTimeZone>

Stores the specified time zone in a scoped variable or the time zone configuration

variable.

Syntax

<fm:setTi neZone val ue="ti neZone”

Body Content

[var="var Nane"]

[scope="{page| request | sessi on| application}”]/>

Empty.
Attributes
Name | Dyn Type Description
The time zone. A St ri ng value is interpreted as
a time zone ID. This may be one of the time zone
. IDs supported by the Java platform (such as
Stringor " - N .
val ue | true | . ava. util. Ti mezone America/Los_Angeles") or a custom time zone
J ’ ’ ID (such as "GMT-8"). See java.util.TimeZone for
more information on supported time zone
formats.
Name of the exported scoped variable which
var false String stores the time zone of type
java.util.Ti neZone.
. Scope of var or the time zone configuration
scope | false String :
variable.

Null & Error Handling

= If val ue is null or empty, the GMT timezone is used.

JSTL 1.1 « November 2003

Description

The <fmt:setTimeZone> action stores the given time zone in the scoped variable
whose name is given by var. If var is not specified, the time zone is stored in the
javax.servlet.jsp.jstl.fnt.tineZone configuration variable, thereby
making it the new default time zone in the given scope.

If the time zone is given as a string, it is parsed using

java. util.Ti meZone. get Ti meZone().

Chapter 9 Formatting Actions

97

9.7 <fmt:formatNumber>

Formats a numeric value in a locale-sensitive or customized manner as a number,
currency, or percentage.

Syntax

Syntax 1: without a body
<fnt:format Nunber val ue="nunericVal ue”
[type="{nunber| currency]| percent}”]
[pattern="custonPattern”]
[currencyCode="currencyCode”]
[currencySynbol =" currencySynbol "]
[groupi ngUsed="{true| fal se}"]
[maxl ntegerDi gi t s=" max|l ntegerDi gits”]
[mMnlintegerDigits="m nlintegerDigits”]
[maxFracti onDi gi t s="maxFracti onDi gits”]
[m nFractionDigits="m nFractionDigits”]
[var =" var Name”]
[scope="{page| request | sessi on| application}”]/>

Syntax 2: with a body to specify the numeric value to be formatted
<fnt:format Nunber [type="{nunber|currency|percent}”]
[pattern="custonPattern”]
[currencyCode="currencyCode”]
[currencySynbol =" currencySynbol "]
[groupi ngUsed="{true| fal se}"]
[maxl ntegerDi gi t s="max|I ntegerDigi ts”]
[mMnlintegerDigits="m nlntegerDigits”]
[maxFractionDi gi t s=" maxFractionDi gits”]
[m nFractionDigits="m nFractionDigits”]
[var =" var Name”]
[scope="{page| request | sessi on| application}”]>
nuneric value to be fornatted
</ fnt:format Nunber >

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

98 JSTL 1.1 « November 2003

Attributes

Name Dyn Type Description
val ue true String or Numeric value to be formatted.
Nurber
Specifies whether the value is to be
type true String formatted as number, currency, or
percentage.
pattern true String Custom formatting pattern.
ISO 4217 currency code. Applied only
currencyCode true String when formatting currencies (i.e. if t ype is
equal to "currency"); ignored otherwise.
Currency symbol. Applied only when
currencySynbol true String formatting currencies (i.e. if t ype is equal
to "currency"); ignored otherwise.
gr oupi ngUsed true bool ean Specnﬁes vyhether the fgrmatted output
will contain any grouping separators.
max| nt eger Di di ts true int Maximum number of digits in the integer
g 9 portion of the formatted output.
mi nl nt eger Di dits true int Minimum number of digits in the integer
9 9 portion of the formatted output.
maxEr act i onDi gi t s true int Maximum number of digits in the
9 fractional portion of the formatted output.
mi nEr acti onDi gi t s true int Minimum number of digits in the
9 fractional portion of the formatted output.
Name of the exported scoped variable
var false String which stores the formatted result as a
String.
scope false String Scope of var.

Constraints

= If scope is specified, var must also be specified.
= The value of the curr encyCode attribute must be a valid ISO 4217 currency

code.

Null & Error Handling

= If val ue is null or empty, nothing is written to the current JspWriter object and
the scoped variable is removed if it is specified (see attributes var and scope).

Chapter 9 Formatting Actions 99

100

= If this action fails to determine a formatting locale, it uses Nurrber . t oSt ri ng()
as the output format.

= If the attribute pat t er n is null or empty, it is ignored.

= If an exception occurs during the parsing of a string value, it must be caught and
rethrown as a JspExcept i on. The message of the rethrown JspExcepti on
must include the string value, and the caught exception must be provided as the
root cause.

Description

The numeric value to be formatted may be specified via the val ue attribute; if
missing, it is read from the tag’s body content.

The formatting pattern may be specified via the pat t er n attribute, or is looked up
in a locale-dependent fashion.

A pattern string specified via the pat t er n attribute must follow the pattern syntax
specified by the class j ava. t ext . Deci mal For mat .

If looked up in a locale-dependent fashion, the formatting pattern is determined via
a combination of the formatting locale, which is determined according to Section 9.2,
and the t ype attribute. Depending on the value of the t ype attribute, the given
numeric value is formatted as a number, currency, or percentage. The locale's default
formatting pattern for numbers, currencies, or percentages is determined by calling
the j ava. t ext . Nunber For mat method get Nunber | nst ance,

get Currencyl nst ance, or get Per cent | nst ance, respectively, with the
formatting locale.

The pat t er n attribute takes precedence over t ype. In either case, the formatting
symbols (such as decimal separator and grouping separator) are given by the
formatting locale.

The (specified or locale-dependent) formatting pattern may be further fine-tuned
using the formatting options described below.

If the numeric value is given as a string literal, it is first parsed into a

j ava. | ang. Nunber. If the string does not contain any decimal point, it is parsed
using j ava. | ang. Long. val ueX (), or j ava. | ang. Doubl e. val ueO ()
otherwise.

The formatted result is output to the current JspW i t er object, unless the var
attribute is given, in which case it is stored in the named scoped variable.

Formatting Options

The gr oupi ngUsed attribute specifies whether the formatted ouput will contain any
grouping separators. See the j ava. t ext . Nunber For mat method
set &G oupi ngUsed() for more information.

JSTL 1.1 « November 2003

The minimum and maximum number of digits in the integer and fractional portions
of the formatted output may be given via the m nl nt egerDi gi t s,

max| ntegerDi gits, m nFracti onDi gi ts, and maxFracti onDi gits attributes,
respectively. See the j ava. t ext . Nunber For mat methods

set M ni num ntegerDi gi ts(), set Maxi mum ntegerDi gits(),

set M ni nunFracti onDi gi t s(), and set Maxi munfracti onDi gi ts() for more
information.

Formatting Currencies

When formatting currencies using the specified or locale-dependent formatting
pattern for currencies, the currency symbol of the formatting locale is used by
default. It can be overridden by using the currencySynbol or currencyCode
attributes, which specify the currency symbol or currency code, respectively, of the
currency to use.

If both cur r encyCode and currencySynbol are present, curr encyCode takes
precedence over curr encySynbol if the java. util. Currency class is defined in
the container’s runtime (that is, if the container’s runtime is J2SE 1.4 or greater), and
currencySynbol takes precendence otherwise. If only currencyCode is given, it
is used as a currency symbol if j ava. uti |l . Currency is not defined.

Chapter 9 Formatting Actions 101

9.8

102

<fmt:parseNumber>

Parses the string representation of numbers, currencies, and percentages that were
formatted in a locale-sensitive or customized manner.

Syntax

Syntax 1: without a body
<f nt: par seNumrber val ue="nuneri cVal ue”
[type="{nunber| currency]| percent}”]
[pattern="custonPattern”]
[par seLocal e=" par seLocal e”]
[integerOnly="{true|fal se}"]
[var =" var Nane”]
[scope="{page| request | sessi on| appl i cation}”]/>

Syntax 2: with a body to specify the numeric value to be parsed

<f nt : par seNumrber [type="{nunber| currency]| percent}”]
[pattern="custonPattern”]
[par seLocal e=" par seLocal e”]
[integerOnly="{true|fal se}"]
[var =" var Name”]
[scope="{page| request | sessi on| application}”]>

nurmeric value to be parsed
</ fnt:parseNunber>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

JSTL 1.1 « November 2003

Attributes

Name Dyn Type Description
val ue true String String to be parsed.
Specifies whether the string in the val ue
type true String attribute should be parsed as a number,
currency, or percentage.
Custom formatting pattern that determines
pattern true String how the string in the val ue attribute is to be
parsed.
Locale whose default formatting pattern (for
numbers, currencies, or percentages,
arseLocal e | true Stringor respectively) is to be used during the parse
P java.util.Local e | operation, or to which the pattern specified
via the pat t er n attribute (if present) is
applied.
. Specifies whether just the integer portion of
IntegerOnly | true bool ean the given value should be parsed.
Name of the exported scoped variable which
var false String stores the parsed result (of type
j ava. | ang. Nunber).
scope false String Scope of var.

Constraints

= If scope is specified, var must also be specified.

Null & Error Handling

= If the numeric string to be parsed is null or empty, the scoped variable defined by
attributes var and scope is removed. This allows "empty" input to be
distinguished from "invalid" input, which causes an exception.

= If parselLocal e is null or empty, it is treated as if it was missing.

= If an exception occurs during the parsing of the value, it must be caught and
rethrown as a JspExcept i on. The message of the rethrown JspExcepti on
must include the value that was to be parsed, and the caught exception must be
provided as the root cause.

= If this action fails to determine a formatting locale, it must throw a
JspExcepti on whose message must include the value that was to be parsed.

= If the attribute pat t er n is null or empty, it is ignored.

Chapter 9 Formatting Actions 103

104

Description

The numeric value to be parsed may be specified via the val ue attribute; if missing,
it is read from the action's body content.

The parse pattern may be specified via the pat t er n attribute, or is looked up in a
locale-dependent fashion.

A pattern string specified via the pat t er n attribute must follow the pattern syntax
specified by j ava. t ext . Deci mal For mat .

If looked up in a locale-dependent fashion, the parse pattern is determined via a
combination of the t ype and par seLocal e attributes. Depending on the value of
the t ype attribute, the given numeric value is parsed as a number, currency, or
percentage. The parse pattern for numbers, currencies, or percentages is determined
by calling the j ava. t ext . Nunmber For nat method get Nunber | nst ance,

get Cur rencyl nst ance, or get Per cent | nst ance, respectively, with the locale
specified via par seLocal e. If par seLocal e is missing, the formatting locale,
which is obtained according to Section 9.2, is used as the parse locale.

The pat t er n attribute takes precedence over t ype. In either case, the formatting
symbols in the pattern (such as decimal separator and grouping separator) are given
by the parse locale.

The i nt eger Onl y attribute specifies whether just the integer portion of the given
value should be parsed. See the j ava. t ext . Nunber For mat method
set Par sel nt eger Onl y() for more information.

If the var attribute is given, the parse result (of type j ava. | ang. Nunber) is stored
in the named scoped variable. Otherwise, it is output to the current JspWi t er
object using j ava. | ang. Nunber.toString().

JSTL 1.1 « November 2003

9.9

<fmt:formatDate>

Allows the formatting of dates and times in a locale-sensitive or customized manner.

Syntax

<fm:format Dat e val ue="date"
[type="{tine| dat e| both}"]

Body Content

[dat eStyl e="{defaul t|short| nedi unilong]|full
[timeStyl e="{default|short| nediunlong]|full

(SN

]
"]

[pattern="custonPattern"]
[ti meZone="ti neZone"]

[var ="var Name"]
[scope="{page| r equest | sessi on| appl i cation}"]/>

Empty.
Attributes
Name Dynamic Type Description
val ue true ! avgé;“e' x Date and/or time to be formatted.
Specifies whether the time, the date, or both
type true String the time and date components of the given
date are to be formatted.
Predefined formatting style for dates. Follows
the semantics defined in class
. j ava. t ext . Dat eFor mat . Applied only
dateStyle true String when formatting a date or both a date and
time (i.e. if t ype is missing or is equal to
"date" or "both"); ignored otherwise.
Predefined formatting style for times. Follows
the semantics defined in class
. . j ava. t ext . Dat eFor mat . Applied only
timeStyle true String when formatting a time or both a date and
time (i.e. if t ype is equal to "time" or "both");
ignored otherwise.
pattern true String Custom formatting style for dates and times.

Chapter 9 Formatting Actions 105

106

Name Dynamic Type Description

. .St ring or Time zone in which to represent the formatted

ti meZone true java.util. -
) time.
Ti meZone
var false Strin Name of the exported scoped variable which
9 stores the formatted result as a St ri ng.

scope false String Scope of var.

Constraints

= If scope is specified, var must also be specified.

Null & Error Handling

= If val ue is null or empty, nothing is written to the current JspWriter object and
the scoped variable is removed if it is specified (see attributes var and scope).

= If ti meZone is null or empty, it is handled as if it was missing.

= If this action fails to determine a formatting locale, it uses
java.util.Date.toString() as the output format.

Description

Depending on the value of the t ype attribute, only the time, the date, or both the
time and date components of the date specified via the val ue attribute or the body
content are formatted, using one of the predefined formatting styles for dates
(specified via the dat eSt yl e attribute) and times (specified via the ti neStyl e
attribute) of the formatting locale, which is determined according to Section 9.2.

dateStyl e and ti neStyl e support the semantics defined in
j ava. t ext . Dat eFor mat .

Page authors may also apply a customized formatting style to their times and dates
by specifying the pat t er n attribute, in which case the t ype, dat eSt yl e, and

ti meStyl e attributes are ignored. The specified formatting pattern must use the
pattern syntax specified by j ava. t ext . Si npl eDat eFor mat .

In order to format the current date and time, a <jsp:useBean> action may be used as
follows:

<j sp: useBean id="now' class="java.util.Date" />
<fnt:formatDate val ue="${now}" />

JSTL 1.1 « November 2003

If the string representation of a date or time needs to be formatted, the string must
first be parsed into a j ava. uti | . Dat e using the <fmt:parseDate> action, whose
parsing result may then be supplied to the <fmt:formatDate> action:

<fmt: parseDate val ue="4/13/02" var="parsed” />
<fnt:formatDate val ue="${parsed}" />

The action’s result is output to the current JspW i t er object, unless the var
attribute is specified, in which case it is stored in the named scoped variable.

Chapter 9 Formatting Actions 107

9.10 <fmt:parseDate>

Parses the string representation of dates and times that were formatted in a locale-
sensitive or customized manner.

Syntax

Syntax 1: without a body
<fnt:parseDate value="dateString”
[type="{tinme| date| both}"]
[dateStyl e="{defaul t|short| mediunlong|full}"”]
[timeStyl e="{default|short| mediunlong|full}”]
[pattern="custonPattern”]
[ti meZone="ti neZone”]
[parseLocal e=" parseLocal e”]
[var =" var Nane”]
[scope="{page| request | sessi on| application}"]/>

Syntax 2: with a body to specify the date value to be parsed
<fnmt:parseDate [type="{tine|date|both}”]
[dateStyl e="{defaul t|short| mediunlong|full}”]
[timeStyl e="{default|short|mediunlong|full}”]
[pattern="custonPattern”]
[ti meZone="ti neZone”]
[par seLocal e=" par seLocal e”]
[var =" var Nane”]
[scope="{page| r equest | sessi on| application}”"]>
date value to be parsed
</ fmt: parseDat e>

”

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

108 JSTL 1.1 « November 2003

Attributes

Name

Dyn

Type

Description

val ue

true

String

Date string to be parsed.

type

true

String

Specifies whether the date string in the
val ue attribute is supposed to contain a
time, a date, or both.

dateStyle

true

String

Predefined formatting style for days
which determines how the date
component of the date string is to be
parsed. Applied only when formatting a
date or both a date and time (i.e. if t ype
is missing or is equal to "date" or "both");
ignored otherwise.

timeStyle

true

String

Predefined formatting styles for times
which determines how the time
component in the date string is to be
parsed. Applied only when formatting a
time or both a date and time (i.e. if t ype
is equal to "time” or "both”); ignored
otherwise.

pattern

true

String

Custom formatting pattern which
determines how the date string is to be
parsed.

ti meZone

true

String or
java.util.Ti neZone

Time zone in which to interpret any time
information in the date string.

Locale whose predefined formatting styles
for dates and times are to be used during

par seLocal e | true . St ring or the parse operation, or to which the
java.util.Local e e .
pattern specified via the pattern
attribute (if present) is applied.
Name of the exported scoped variable in
var false String which the parsing result (of type
java.util . Date) is stored.
scope false String Scope of var.

Constraints

If scope is specified, var must also be specified.

Chapter 9 Formatting Actions 109

110

Null & Error Handling

= If the date string to be parsed is null or empty, the scoped variable defined by var
and scope is removed. This allows "empty" input to be distinguished from
"invalid" input, which causes an exception.

= If ti meZone is null or empty, it is treated as if it was missing.

= If parselLocal e is null or empty, it is treated as if it was missing.

= If an exception occurs during the parsing of the value, it must be caught and
rethrown as a JspExcept i on. The message of the rethrown JspExcepti on
must include the value that was to be parsed, and the caught exception must be
provided as the root cause.

= If this action fails to determine a formatting locale, it must throw a
JspExcepti on whose message must include the value that was to be parsed.

Description

The date string to be parsed may be specified via the val ue attribute or via the tag’s
body content.

Depending on the value of the t ype attribute, the given date string is supposed to
contain only a time, only a date, or both. It is parsed according to one of the
predefined formatting styles for dates (specified via the dat eSt yl e attribute) and
times (specified via the ti neSt yl e attribute) of the locale specified by the

par seLocal e attribute. If the par seLocal e attribute is missing, the formatting
locale, which is determined according to Section 9.2, is used as the parse locale.

If the given date string uses a different format, the pattern required to parse it must
be specified via the pat t er n attribute, which must use the pattern syntax specified
by j ava. t ext. Si npl eDat eFor mat . In this case, the t ype, dat eSt yl e, and

ti meStyl e attributes are ignored. Parsing is non-lenient, i.e. the given date string
must strictly adhere to the parsing format.

If the given time information does not specify a time zone, it is interpreted in the
time zone determined according to Section 9.4.

If the var attribute is given, the parsing result (of type j ava. uti | . Dat e) is stored
in the named scoped variable. Otherwise, it is output to the current JspWi t er
using the j ava. uti| . Dat e method t oSt ri ng() .

JSTL 1.1 « November 2003

9.11 Configuration Settings

This section describes the formatting-related configuration settings. Refer to
Section 2.8 for more information on how JSTL processes configuration data.

9.11.1 TimeZone

Vari abl e nane

javax.servlet.jsp.jstl.fnt.tineZone

Java Const ant

Confi g. FMI_TI MEZONE

Type Stringorjava.util.Ti meZone
Set by <fnt:set Ti meZone>
Used by <fmt:formatDat e>, <fnt:parseDate>

Specifies the application’s default time zone. A St ri ng value is interpreted as
defined in action <fmt:timeZone> (see Section 9.5).

Chapter 9 Formatting Actions

111

112 JSTL 1.1 « November 2003

CHAPTER 10

SQL Actions
sgl tag library

Many web applications need to access relational databases as the source of dynamic
data for their presentation layer. While it is generally preferred to have database
operations handled within the business logic of a web application designed with an
MVC architecture, there are situations where page authors require this capability
within their JSP pages (e.g. prototyping/testing, small scale/simple applications,
lack of developer resources).

The JSTL SQL actions provide the basic capabilities to easily interact with relational
databases.

10.1

10.1.1

Overview

The JSTL SQL actions allow page authors to:

= Perform database queries (sel ect)

= Easily access query results

= Perform database updates (i nsert, updat e, del et e)
= Group several database operations into a transaction

Data Source

SQL actions operate on a data source, as defined by the Java class

j avax. sql . Dat aSour ce. A Dat aSour ce object provides connections to the
physical data source it represents. Within the context of a Connect i on retrieved
from the Dat aSour ce, SQL statements are executed and results are returned.

113

10.1.2

A data source can be specified explicitly via the dat aSour ce attribute in SQL
actions, or it can be totally transparent to a page author by taking advantage of the
data source configuration setting (j avax. servlet.jsp.jstl.sql.dataSource).

There are two ways a data source can be specified as a string.

The first way is through a JNDI relative path, assuming a container supporting
JNDI. For example, with the absolute JNDI resource path j ava: conp/ env/j dbc/
nyDat abase, the JNDI relative path to the data source resource would simply be
j dbc/ nyDat abase, given that j ava: conp/ env is the standard JNDI root for a
J2EE application.

The second way is by specifying the parameters needed by the JDBC
Dri ver Manager class, using the following syntax (see Section 10.6 for details on the
JDBC parameters)

url[,[driver][,[user][, password]]]
For example,
jdbc:nysql ://1ocal host/,org.gjt.mm nysql.Driver

where the database has been setup for access without any username or password. If
the *,” character occurs in any of the JDBC parameters, it can be escaped by ‘\’. The
character ‘\ itself can be escaped in the same way.

While the JDBC Dri ver Manager class provides a low cost way to use SQL actions,
it is not recommended to use it other than for prototyping purposes because it does
not provide connection management features one can expect from a properly
designed Dat aSour ce object.

Querying a Database

The most common use of the database actions is to query a database and display the
results of the query.

114 JSTL 1.1 « November 2003

The following sample code selects all customers from China from the customers

table in the database, orders them by last name, and finally displays their last name,
first name, and address in an HTML table.

<sql : query var="custoners" dataSour ce="${dat aSource}">
SELECT * FROM custoners

WHERE country = ' China’
ORDER BY | ast nane
</sql : query>

<t abl e>

<c:forEach var="row' itenms="${custoners.rows}">
<tr>
<td><c: out val ue="3${row. | ast Nane}"/></td>
<td><c:out value="${row. firstName}"/></td>

<td><c: out val ue="${row address}"/></td>
</[tr>

</ c: forEach>
</t abl e>

This next example shows a generic way to display the results of a query with
column names as headers:

<t abl e>

<l-- colum headers -->
<tr>

<c: forEach var="col umNanme” itenms="${result.col umNanes}”>

<t h><c: out val ue="${col umNane}"/></th>
</ c: forEach>

</[tr>

<!-- colum data -->

<c:forEach var="row' itens="${result.rowsByl ndex}">
<tr>

<c:forEach var="colum" itens="${row}">
<td><c: out val ue="${colum}"/></td>
</ c: for Each>
</tr>
</ c: forEach>
</t abl e>

Chapter 10 SQL Actions 115

10.1.3

10.1.4

Updating a Database

The <sql:update> action updates a database. To ensure database integrity, several
updates to a database may be grouped into a transaction by nesting the
<sgl:update> actions inside a <sgl:transaction> action.

For example, the following code transfers money between two accounts in one
transaction:

<sqgl : transaction dataSour ce="${dat aSource}" >
<sql : updat e>
UPDATE account
SET Bal ance = Bal ance - ?
WHERE accountNo = ?
<sql : param val ue="${transfer Anount}"/ >
<sql : param val ue="${account Fron} "/ >
</ sql : updat e>
<sql : updat e>
UPDATE account
SET Bal ance = Bal ance + ?
WHERE accountNo = ?
<sql : param val ue="${transfer Amount}"/ >
<sql : param val ue="${account To}"/ >
</ sql : updat e>
</sqgl:transacti on>

SQL Statement Parameters

The JSTL database actions support substituting parameter values for parameter
markers (“?””) in SQL statements (as shown in the previous example). This form of
parametric replacement is exposed by the SQLExecut i onTag interface (see
Chapter 16 “Java APIs”).

The SQLExecut i onTag interface is implemented by the tag handlers for
<sgl:query> and <sql:update>. It is exposed in order to support custom parameter
actions. These custom actions may retrieve their parameters from any source and
process them before substituting them for a parameter marker in the SQL statement
of the enclosing SQLExecut i onTag action.

For example, a GUI front end may have a user enter a date as three separate fields
(year, month, and day), and use this information in a database query. If the database
table being accessed provides only a single column for the complete date, action

116 JSTL 1.1 « November 2003

<acme:dateParam> could assemble the three separate input parameters into one and
pass it to the addSQLPar anet er () method of its enclosing SQLExecut i onTag
action:

<sql : updat e>
UPDATE Per sonal I nfo
SET BirthDate = ?
VWHERE clientld = ?
<acne: dat ePar am year ="${year}" nont h="${nont h}" day="${day}"/>
<sql : param val ue="${clientld}"/>
</ sql : updat e>

The JSTL formatting tags may be used to parse the string representation of dates and
numbers into instances of j ava. uti | . Dat e and j ava. | ang. Nunber, respectively,
before supplying them to an enclosing SQLExecut i onTag for parametric
replacement:

<sql : updat e sql ="${sql UpdateStnt}” dataSource="${dat aSource}">
<fmt : parseDate var="nyDate" val ue="${soneDate}"/>
<sql : param val ue="${nyDate}"/ >

</ sql : updat e>

Chapter 10 SQL Actions 117

10.2

Database Access

This section describes the algorithm used by the SQL actions (<sqgl:query>,
<sgl:update>, <sql:transaction>) to access a database.

= Try to get a reference to a data source as follows:

« If the attribute dat aSour ce is specified, use the value specified for that
attribute as the data source.

« Otherwise, get the configuration setting associated with
javax. servlet.jsp.jstl.sql.dataSource using Config.find() (see
Section 2.8). Use the value found as the data source if it is not null.

= If a data source is obtained from the previous step:

« Ifitis a Dat aSour ce object, this is the data source used by the action to access
the database.

« Otherwise, ifitisa Stri ng:

« Assume this is a JNDI relative path and retrieve the data source from the
container’s JNDI naming context by concatenating the specified relative path
to the J2EE defined root (j ava: conp/ env/).

« If the previous step fails (data source not found), assume the string specifies
JDBC parameters using the syntax described in Section 10.1.1 and do as
follows:

« If driver is specified, ensure it is loaded
« Access the named URL through the Dri ver Manager class, using an
empty string for user or passwor d if they are not specified.

« If the previous step fails, throw an exception.

= Otherwise, throw an exception.

An implementation need not create new objects each time a SQL action is called and
the algorithm above does not yield a Dat aSour ce object directly; i.e when a JNDI
path or parameters for the JDBC Dri ver Manager class are used. It may reuse
objects that it previously created for identical arguments.

It is important to note that actions that open a connection to a database must close
the connection as well as release any other associated resources (for example,

St at enent , Prepar edSt at enent and Resul t Set objects) by the time the action
completes. This ensures that no connections are left open and that leaks are avoided
when these actions are used with pooling mechanisms.

118 JSTL 1.1 « November 2003

| 10.3

<sgl:query>

Queries a database.

Syntax

Syntax 1: Without body content
<sql : query sql ="sql Query"
var ="var Nane" [scope="{page|request|session|application}”]
[dat aSour ce=" dat aSour ce”]
[maxRows =" maxRows"]
[start Row="start Row'] />

Syntax 2: With a body to specify query arguments
<sgl : query sql ="sql Query"
var ="var Nanme" [scope="{page|request|session|application}”]
[dat aSour ce=" dat aSour ce”]
[maxRows =" maxRows"]
[start Row="start Row'] >

<sql : paran® actions
</ sql : query>

Syntax 3: With a body to specify query and optional query parameters
<sql : query var ="var Nane"
[scope="{page| request | sessi on| appl i cation}”]
[dat aSour ce=" dat aSour ce”]
[maxRows =" maxRows"]
[start Row="start Row'] >
query
optional <sql: parant actions
</ sql : query>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Chapter 10 SQL Actions 119

Attributes

Name Dynamic Type Description
sql true String SQL query statement.
. Data source associated with the database to
javax. sql . uery. A St ri ng value represents a relative path
dat aSour ce true Dat aSour ce query. 9 P P
- to a JNDI resource or the parameters for the
or String .
Dri ver Manager class.
The maximum number of rows to be included in
. the query result. If not specified, or set to -1, no
max Rows true int

limit on the maximum number of rows is
enforced.

The returned Resul t object includes the rows
starting at the specified index. The first row of
start Row true i nt the original query result set is at index 0. If not
specified, rows are included starting from the
first row at index 0.

Name of the exported scoped variable for the
query result. The type of the scoped variable is

var false String . : .
javax.servlet.jsp.jstl.sql.
Resul t (see Chapter 16 “Java APIs”).
scope false String Scope of var.

Constraints

= If dat aSour ce is specified, this action must not be nested inside a
<sgl:transaction>.
= maxRows must be >= -1

Null & Error Handling

= If dat aSour ce is null, a JspExcept i on is thrown.

= If an exception occurs during the execution of this action, it must be caught and
rethrown as a JspExcept i on. The message of the rethrown JspExcepti on
must include the SQL statement, and the caught exception must be provided as
the root cause.

Description

The <sql:query> action queries a database and returns a single result set containing
rows of data that it stores in the scoped variable identified by the var and scope
attributes.

1. <sgl:transaction> is responsible for setting the data source in a transaction.

120 JSTL 1.1 « November 2003

If the query produces no results, an empty Resul t object (of size zero) is returned.

The SQL query statement may be specified by the sql attribute or from the action’s
body content.

The query statement may contain parameter markers (“?”) identifying JDBC

Pr epar edSt at ement parameters, whose values must be supplied by nested
parameter actions (such as <sqgl:param>, see Section 10.7). The <sgl:query> action
implements the SQLExecut i onTag interface (see Chapter 16 “Java APIs”), allowing
parameter values to be supplied by custom parameter actions.

maxRows and start Row

The maximum number of rows to be included in the query result may be specified

by the maxRows attribute (for a specific <sql:query> action) or by the configuration
setting j avax. servl et.jsp.jstl.sqgl.nmxRows (see Section 2.8 and

Section 10.9). Attribute maxRows has priority over the configuration setting. A value
of -1 means that no limit is enforced on the maximum number of rows.

The st ar t Row attribute may be used to specify the index of the first row to be
included in the returned Resul t object. For example, if given a value of 10, the
returned Result object will start with the row located at index 10 (i.e. rows 0 through
9 of the original query result set are skipped). All remaining rows of the original
guery result set are included.

If both st art Rowand maxRows are specified, a maximum of st art Row +
maxRows rows are retrieved from the database. All rows up to st art Row are then
discarded, and the remaining rows (from st art Row through st art Row +
maxRows) are included in the result.

When using st ar t Row it is important to note that the order in which rows are
returned is not guaranteed between RDBMS implementations unless an “order by”
clause is specified in the query.

maxRows and st ar t Row protect against so-called "runaway queries”, allow efficient
access to the top rows of large result sets, and also provide a “poor-man’s way” of
paging through a large query result by increasing st art Row by maxRows over a
previous page.

Obtaining and Releasing a Connection

If <sql:query> is nested inside an <sgl:transaction> action, the Connect i on object is
obtained from that parent <sql:transaction> which is reponsible for managing access
to the database.

Otherwise, access to the database is performed according to the algorithm described
in Section 10.2. A Connect i on object is obtained and released before the action
completes.

Chapter 10 SQL Actions 121

10.4

<sgl:update>

Executes an SQL | NSERT, UPDATE, or DELETE statement. In addition, SQL
statements that return nothing, such as SQL DDL statements, can be executed.

Syntax

Syntax 1: Without body content
<sql : updat e sqgl ="sqgl Updat e"
[dat aSour ce=" dat aSour ce”]
[var="var Name"] [scope="{page|request|session|application}”]/>

Syntax 2: With a body to specify update parameters
<sql : updat e sqgl ="sqgl Updat e"
[dat aSour ce="dat aSour ce”]
[var="var Name"] [scope="{page|request|session|application}”]>
<sql : paran®> actions
</ sql : updat e>

Syntax 3: With a body to specify update statement and optional update parameters
<sql : updat e [dat aSour ce="dat aSour ce”]
[var="var Name"] [scope="{page|request|session|application}”]>
updat e st at enment
optional <sqgl:paranr actions
</ sql : updat e>

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

122 JSTL 1.1 « November 2003

Attributes

Name Dyn Type Description

sql true String SQL update statement.

Data source associated with the database to update.

j avax. sql . : .
dat aSour ce | true | Dat aSour ce A String value represents a relative path to a JNDI
or String resource or the parameters for the JDBC

Driver Manager class.

Name of the exported scoped variable for the result
var false String of the database update. The type of the scoped
variable is j ava. | ang. | nt eger.

scope false String Scope of var.

Constraints

= If scope is specified, var must also be specified.
= If dat aSour ce is specified, this action must not be nested inside a
<sgl:transaction>.

Null & Error Handling

= If dat aSour ce is null, a JspExcept i on is thrown.

= If an exception occurs during the execution of this action, it must be caught and
rethrown as a JspExcept i on. The message of the rethrown JspExcepti on
must include the SQL statement, and the caught exception must be provided as
the root cause.

Description

The SQL update statement may be specified by the sql attribute or from the action’s
body content.

The update statement may contain parameter markers (“?”") identifying JDBC

Pr epar edSt at enent parameters, whose values must be supplied by nested
parameter actions (such as <sql:param>, see Section 10.7). The <sqgl:update> action
implements the SQLExecut i onTag interface (see Chapter 16 “Java APIls”), allowing
the parameter values to be supplied by custom parameter tags.

The connection to the database is obtained in the same manner as described for
<sql:query> (see Section 10.3).

The result of an <sgl:update> action is stored in a scoped variable named by the
var attribute, if that attribute was specified. That result represents the number of
rows that were affected by the update. Zero is returned if no rows were affected by

Chapter 10 SQL Actions 123

| NSERT, DELETE, or UPDATE, and for any SQL statement that returns nothing (such
as SQL DDL statements). This is consistent with method execut eUpdat e() of the
JDBC class St at enent .

124 JSTL 1.1 « November 2003

10.5

<sgl:transaction>

Establishes a transaction context for <sqgl:query> and <sql:update> subtags.

Syntax

<sql : transaction [dat aSource="dat aSource”]
[i sol ation=i sol ati onLevel] >
<sql : query> and <sgl : updat e> statenents
</sql :transaction>

i sol ationLevel ::= "read_conmtted"
| "read_uncommitted"
| "repeatabl e_read"
| "serializable"

Body Content

JSP. The JSP container processes the body content and then writes the result to the
current JspW i t er. The action ignores the body content.

Attributes
Name Dyn Type Description
j avax. sql DataSource associated with the database to access. A
dat aSour ce true | Dat aSour ce String value represents a relative path to a JNDI
- resource or the parameters for the JDBC
orString . -
DriverManager facility.
Transaction isolation level. If not specified, it is the
i sol ation true String isolation level the DataSource has been configured
with.

Constraints

= Any nested <sgl:query> and <sql:update> actions must not specify a
dat aSour ce attribute.

Null & Error Handling

= If dat aSour ce is null, a JspExcept i on is thrown.

Chapter 10 SQL Actions 125

126

= Any exception occurring during the execution of this action must be caught and
rethrown after the transaction has been rolled back (see description below for
details).

Description

The <sqgl:transaction> action groups nested <sgl:query> and <sgl:update> actions
into a transaction.

The transaction isolation levels are defined by j ava. sql . Connecti on.

The tag handler of the <sgl:transaction> action must perform the following steps in
its lifecycle methods:

= doStartTag():

« Determines the transaction isolation level the DBMS is set to (using the
Connecti on method get Transacti onl sol ati on()).

If transactions are not supported (that is, the transaction isolation level is equal
to TRANSACTI ON_NONE), an exception is raised, causing the transaction to fail.

For any other transaction isolation level, the auto-commit mode is is saved (so
it can later be restored), and then disabled by calling
set Aut oCommi t (f al se) on the Connect i on.

« Ifthei sol ati on attribute is specified and differs from the connection's
current isolation level, the current transaction isolation level is saved (so it can
later be restored) and set to the specified level (using the Connect i on method
set Transacti onl sol ati on()).

= doEndTag(): Calls the Connecti on method conmit ().
= doCat ch(): Calls the Connect i on method r ol | back() .
=« doFinally():

« If a transaction isolation level has been saved, it is restored using the
Connecti on method set Transacti onl sol ati on().

« Restore auto-commit mode to its saved value by calling set Aut oConmi t () on
the Connecti on.

« Closes the connection.

The Connect i on object is obtained and managed in the same manner as described
for <sql:query> (see Section 10.3), except that it is never obtained from a parent tag
(<sql:transaction> tags can not be nested as a means to propagate a Connecti on).

Note that the <sql:transaction> tag handler commits or rollbacks the transaction (if it
catches an exception) by calling the JDBC Connecti on comit() and

rol I back() methods respectively. Executing the corresponding SQL statements
using <sql:update>, e.g. <sql:update sql="rollback" />, within the <sqgl:transaction>
element body is not supported and the result of doing so is unpredictable.

JSTL 1.1 « November 2003

Finally, the behavior of the <sqgl:transaction> action is undefined if it executes in the
context of a larger JTA user transaction.

Chapter 10 SQL Actions 127

10.6 <sgl:setDataSource>

Exports a data source either as a scoped variable or as the data source configuration
variable (j avax. servl et.jsp.jstl.sql.dataSource).

Syntax

<sql : set Dat aSour ce

{dat aSour ce="dat aSour ce" |
url ="jdbcUrl"
[driver="driverd assNane"]
[user ="user Nanme"]
[passwor d="password"] }

[var ="var Name"]

[scope="{page| request | sessi on| application}”]/>

Body Content

Empty.

Attributes

Name Dyn Type Description

Data source. If specified as a string, it

String or can either be a relative path to a JNDI
j avax. sql . Dat aSour ce | resource, or a JDBC parameters string
as defined in Section 10.1.1.

dat aSour ce true

driver true String JDBC parameter: driver class name.

JDBC parameter: URL associated with

url true String the database

JDBC parameter: database user on
user true String whose behalf the connection to the
database is being made.

passwor d true String JDBC parameter: user password

Name of the exported scoped variable
var false String for the data source specified. Type can
be Stri ng or Dat aSour ce.

If var is specified, scope of the
scope false String exported variable. Otherwise, scope of
the data source configuration variable.

128 JSTL 1.1 « November 2003

Null & Error Handling

= If dat aSour ce is null, a JspExcept i on is thrown.

Description

If the var attribute is specified, the <sql:setDataSource> action exports the data
source specified (either as a Dat aSour ce object or as a String) as a scoped variable.
Otherwise, the data source is exported in the

javax. servlet.jsp.jstl.sql.dataSource configuration variable.

The data source may be specified either via the dat aSour ce attribute (as a

Dat aSour ce object, JNDI relative path, or JDBC parameters string), or via the four
JDBC parameters attributes. These four attributes are provided as a simpler
alternative to the JDBC parameters string syntax defined in Section 10.1.1 that would
have to be used with the dat aSour ce attribute.

As mentioned in Section 10.1.1, using JDBC’s Dri ver Manager class to access a
database is intended for prototyping purposes only because it does not provide
connection management features one can expect from a properly designed

Dat aSour ce object.

Chapter 10 SQL Actions 129

10.7

<sgl:param>

Sets the values of parameter markers (“?””) in a SQL statement. Subtag of
SQLExecut i onTag actions such as <sqgl:query> and <sgl:update>.

Syntax

Syntax 1: Parameter value specified in attribute “value”
<sgl : param val ue="val ue”/ >

Syntax 2: Parameter value specified in the body content
<sql : par ane>

par anet er val ue
</ sql : paran®

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes
Name Dyn Type Description
val ue true oj ect Parameter value.

Constraints

= Must be nested inside an action whose tag handler is an instance of
SQLExecut i onTag (see Chapter 16 “Java APIs™).

Null & Error Handling

= If val ue is null, the parameter is set to the SQL value NULL.

Description

The <sql:param> action substitutes the given parameter value for a parameter
marker(“?”) in the SQL statement of its enclosing SQLExecut i onTag action.

Parameters are substituted in the order in which they are specified.

130 JSTL 1.1 « November 2003

The <sql:param> action locates its nearest ancestor that is an instance of
SQLExecut i onTag and calls its addSQLPar anet er () method, supplying it with
the given parameter value.

It is important to note that the semantics of

SQLExecut i onTag. addSQ.Par anet er () are such that supplying a parameter
with a St ri ng value (e.g. when using syntax 2) only works for columns of text type
(CHAR, VARCHAR or LONGVARCHAR).

Chapter 10 SQL Actions 131

10.8

<sgl.dateParam>

Sets the values of parameter markers (“?””) in a SQL statement for values of type
java.util . Date. Subtag of SQLExecut i onTag actions, such as <sqgl:query> and
<sgl:update>.

Syntax

<sql : dat eParam val ue="val ue” [type="{tinestanp|tine|date}”]/>

Body Content

Empty.
Attributes
Name Dyn Type Description
val ue true iava. util.Date Parameter value for DATE, TIME, or
J ' ' TIMESTAMP column in a database table.
type true String One of "date", "time" or "timestamp".

Constraints

Must be nested inside an action whose tag handler is an instance of
SQLExecut i onTag (see Chapter 16 “Java APIs™).

Null & Error Handling

If val ue is null, the parameter is set to the SQL value NULL.

Description

This action converts the provided j ava. uti | . Dat e instance to one of
java.sql . Date,java.sql.Tinmeorjava. sql . Ti mest anp as defined by the
t ype attribute as follows:

If the java.util . Dat e object provided by the val ue attribute is an instance of
java.sql.Tine,java. sqgl . Date, orjava. sql . Ti nest anp, and the t ype
attribute matches this object's type, then it is passed as is to the database.

132 JSTL 1.1 « November 2003

= Otherwise, the object is converted to the appropriate type by calling that type's
constructor with a parameter of dat e. get Ti me() , where dat e is the value of
the val ue attribute.

The <sql:dateParam> action substitutes the given parameter value for a parameter
marker(*“?””) in the SQL statement of its enclosing SQLExecut i onTag action.

Parameters are substituted in the order in which they are specified.

The <sql:dateParam> action locates its nearest ancestor that is an instance of
SQLExecut i onTag and calls its addSQLPar anet er () method, supplying it with
the given parameter value.

Chapter 10 SQL Actions 133

| 10.9 Configuration Settings

This section describes the configuration settings used by the SQL actions. Refer to
Section 2.8 for more information on how JSTL processes configuration data.

10.9.1 DataSource

Vari abl e nane

javax.servlet.jsp.jstl.sqgl.dataSource

Java Const ant

Conf i g. SQL_DATA SOURCE

Type

String orjavax. sql . Dat aSour ce

Set by

<sql : set Dat aSour ce>, Depl oynent Descri ptor,
Config class

Used by

<sql : query>, <sql:update>, <sql:transaction>

The data source to be accessed by the SQL actions. It can be specified as a string

representing either a JNDI relative path or a JDBC parameters string (as defined in
Section 10.1.1), or as a j avax. sql . Dat aSour ce object.

10.9.2 MaxRows

Vari abl e nane

javax.servlet.jsp.jstl.sqgl.mxRows

Java Const ant

Conf i g. SQL_MAX_ROAB

Type I nt eger
Set by Depl oynent Descriptor, Config class
Used by <sqgl : query>

The maximum number of rows to be included in a query result. If the maximum

number of rows is not specified, or is -1, it means that no limit is enforced on the
maximum number of rows. Value must be >= -1.

134 JSTL 1.1 « November 2003

CHAPTER 11

XML Core Actions

xml tag library

Enterprise data used in the web tier is increasingly XML these days — when
companies cooperate over the web, XML is the data format of choice for exchanging
information.

XML is therefore becoming more and more important in a page author's life. The set
of XML actions specified in JSTL is meant to address the basic XML needs a page
author is likely to encounter.

The XML actions are divided in three categories: XML core actions (this chapter),
XML flow control actions (Chapter 12), and XML transform actions (Chapter 13).

11.1

11.1.1

Overview

A key aspect of dealing with XML documents is to be able to easily access their
content. XPath, a W3C recommendation since 1999, provides a concise notation for
specifying and selecting parts of an XML document. The XML set of actions in JSTL
is therefore based on XPath.

The introduction of XPath for the XML tagset expands the notion of expression
language. XPath is an expression language that is used locally for the XML actions.
Below are the rules of integration that XPath follows as a local expression language.
These rules ensure that XPath integrates nicely within the JSTL environment.

XPath Context

In XPath, the context for evaluating an expression consists of:
= A node or nodeset

135

11.1.2

136

= Variable bindings (see below)

= Function library

The default function library comes with the XPath engine. Some engines provide
extension functions or allow customization to add new functions. The XPath
function library in JSTL is limited to the core function library of the XPath

specification.

= Namespace prefix definitions which allow namespace prefixes to be used within

an XPath expression.

XPath Variable Bindings

The XPath engine supports the following scopes to easily access web application
data within an XPath expression. These scopes are defined in exactly the same way
as their implicit object counterparts in the JSTL expression language (see

Section A.6).
Expression Mapping
$f oo pageContext.findAttribute("foo")

$param f oo

request . get Paraneter ("foo")

$header : f oo

request . get Header ("f 00")

$cooki e: f oo

maps to the cookie's value for nane foo

$i ni t Par am f oo

application.getlnitParaneter("foo")

$pageScope: f 00

pageCont ext . get Attri but e(
"foo", PageContext.PAGE_SCOPE)

$r equest Scope: f 0o

pageCont ext . get Attri but e(
"foo", PageContext.REQUEST SCOPE)

$sessi onScope: f 00

pageCont ext . get Attri but e(
"foo", PageContext. SESSI ON_SCOPE)

$appl i cati onScope: f 0o

pageCont ext . get Attri but e(
"foo", PageContext. APPLI CATI ON_SCOPE)

Through these mappings, JSP scoped variables, request parameters, headers, and
cookies, as well as context init parameters can all be used inside XPath expressions

easily. For example:

/ f oo/ bar [@=%par am nane]

JSTL 1.1 « November 2003

11.1.3

would find the "bar" element with an attribute "x" equal to the value of the http
request parameter "name".

Java to XPath Type Mappings

An XPath variable must reference a j ava. | ang. Obj ect instance in one of the
supported scopes, identified by namespace prefix. The following mappings must be
supported:

Java Type XPath Type
java. | ang. Bool ean bool ean

j ava. | ang. Nunber nunber
java.lang. String string
Object exported by <x:parse> node- set

A compliant implementation must allow an XPath variable to address objects
exposed by that implementation’s handlers for <x:set> and <x:forEach>. For
example, while an implementation of <x:set> may expose, for a node-set S, an object
of any valid Java type, subsequent XPath evaluations must interpret this object as
the node-set S.

An XPath expression must also treat variables that resolve to implementations of
standard DOM interfaces as representing nodes of the type bound to that interface
by the DOM specification.

XPath variable references that address objects of other types result in
implementation-defined behavior. (An implementation may throw an exception if it
encounters an unrecognized type.) Following the XPath specification (section 3.1), a
variable name that is not bound to any value results in an exception.

Chapter 11 XML Core Actions 137

11.1.4

11.1.5

11.1.6

XPath to Java Type Mappings

Evaluation of XPath expressions evaluate to XPath types. Their mapping to Java
objects is defined as follows:

XPath Type Java Type

bool ean

true or false j ava. | ang. Bool ean

nunber

a floating-point number java.lang. Nunber

string

a sequence of UCS characters java.lang. String

Type usable by JSTL XML-manipulation
tags in the same JSTL implementation. The
specific Java type representing node-sets
may thus vary by implementation.

node- set
an unordered collection of nodes
without duplicates

The sel ect Attribute

In all the XML actions of JSTL, XPath expressions are always specified using the
sel ect attribute. sel ect is therefore always specified as a string literal that is
evaluated by the XPath engine.

This clear separation, where only the sel ect attribute of XML actions evaluates
XPath expressions, helps avoid confusion between XPath (expression language that
is local to the XML actions) and the JSTL expression language (global to all actions
with dynamic attributes in the EL version of the tag library).

Default Context Node

The context node for every XPath expression evaluation in JSTL that does not appear
in the body of an <x:forEach> tag is the root of an empty document. Page authors
wishing to work with documents must therefore suply their own node(s) using an
XPath variable (see Section 11.1.2).

Action <x:forEach> establishes for its nested actions a specific context for XPath
expressions evaluation. See Section 12.6 for details.

138 JSTL 1.1 « November 2003

11.1.7

11.1.8

Resources Access

XML actions such as <x:parse> and <x:transform> allow the specification of XML
and/or XSLT documents as St ri ng or Reader objects. Accessing a resource
through a URL is therefore handled through the <c:import> action that works
seamlessly with the XML tags as shown below:

<c:inport url="http://acme. con product|nfo” var="doc” >
<c: param nane="pr oduct Nane” val ue="${product. nane}”/>

</c:inport>

<x: parse doc="${doc}” var="parsedDoc”/>

To resolve references to external entities, the syst enl d (<x:parse>) and
docSyst eml d/xsl t Syst enl d (<x:transform>) attributes can be used. For these
attributes:

= Absolute URLs are passed to the parser directly

= Relative URLs are treated as references to resources (e.g., loaded via
Ser vl et Cont ext . get Resour ce()) and loaded using an Ent i t yResol ver
and URI Resol ver as necessary

Core Actions

The XML core actions provide “expression language support” for XPath. These
actions are therefore similar to the EL support actions <c:out> and <c:set> covered in
Chapter 4, except that they apply to XPath expressions.

The core XML actions feature one additional action, <x:parse>, to parse an XML
document into a data structure that can then be processed by the XPath engine. For
example:

<!-- parse an XM. docunent -->
<c:inmport url="http://acne.com custoner?i d=76567" var="doc"/>
<x: parse doc="3%${doc}” var="parsedDoc”/>

<I-- access XM. data via XPath expressions -->
<x:out sel ect="$parsedDoc/ nane”/ >
<x:out sel ect="%parsedDoc/ address”/>

<l-- set a scoped variable -->
<x:set var="custNane” scope="request” sel ect="$par sedDoc/ nane”/ >

Chapter 11 XML Core Actions 139

The context for the evaluation of an XPath Expression can be set either directly
within the XPath expression (as shown in the example above), or via an ancestor tag
that sets a context that can be used by nested tags. An example of this is with action
<x:forEach> (see Section 12.6).

<!-- context set by ancestor tag <x:forEach> -->
<x: for Each sel ect =" $par sedDoc// cust oner” >

<x:out sel ect="name"/>
</ x: f or Each>

140 JSTL 1.1 « November 2003

11.2

<X:parse>

Parses an XML document.

Syntax

Syntax 1: XML document specified via a String or Reader object

<x: parse {doc="XM.Docunent” | xni =" XM_Docunent "}
{var="var” [scope="scope”]|varDom="var” [scopeDon¥"scope”]}
[system d="system d”]
[filter="filter"]/>

Syntax 2: XML document specified via the body content
<X: par se
{var="var” [scope="scope”]|varDonm="var” [scopeDon¥"scope”]}
[system d="system d”]
[filter="filter”]>
XM Docunent to parse
</ x: parse>

where scope is{page| request| sessi on| appl i cati on}

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes

Name Dyn Type Description
doc true String, Reader Source XML document to be parsed.
xm true String, Reader Deprecated!. Use attribute doc instead.

. The system identifier (URI) for parsing the

system d | true String XML document.

. org. xm . sax. Filter to be applied to the source
filter true XM.Fil ter document.

1. Deprecated.

Chapter 11 XML Core Actions 141

142

Name Dyn Type Description
Name of the exported scoped variable for
. the parsed XML document. The type of the
var false String - . .
scoped variable is implementation
dependent.
scope false String Scope for var.
Name of the exported scoped variable for
var Dom false String the parsed _XML _document. The type of the
scoped variable is
or g. w3c. dom Docunent .
scopeDom | false String Scope for var Dom

1. Names beginning with the string "xml" are reserved by the XML specification.

Null & Error Handling

= If the source XML document is null or empty, a JspExcept i on is thrown.
=« Iffilter isnull filtering is not performed.

Description

The <x:parse> action parses an XML document and saves the resulting object in the
scoped variable specified by attribute var or var Dom It does not perform any
validation against DTDs or Schemas.

The XML document can be specified either with the doc attribute, or inline via the
action's body content.

var and var Dom

If var is used, the type of the resulting object is not defined by this specification.
This allows implementations to use whatever they deem best for an efficient
implementation of the XML tagset. var Domexposes a DOM document, allowing
collaboration with custom actions. Objects exposed by var and var Domcan both be
used to set the context of an XPath expression.

Filtering for Performance Benefits

If an implementation of the XML tagset is based on DOM-like structures, there will
be a significant performance impact when dealing with large XML documents. To
help with this, attribute fi | t er can be used to allow filtering of the input data prior
to having it parsed by the implementation into a DOM-like structure.

JSTL 1.1 « November 2003

For example, if one is interested in processing only the "European” customers which
represent only 10% of the original XML document received as input, it will greatly
reduce the size and complexity of the resulting DOM structure if all non-European
customers are pruned from the XML document prior to parsing.

<c:inport url="http://acne.conl custoners” var="doc"/>
<x: parse doc="%${doc}” filter="%{filterEuropeanCust}”
var =" par sedDoc” / >

The fil ter attribute accepts an object of type or g. xm . sax. XM_Fi | ter.

If configuration of the filter is desirable, it is suggested that the developer of the
filter provides a custom tag for easy configuration by a page author.

Chapter 11 XML Core Actions 143

11.3

<X:out>

Evaluates an XPath expression and outputs the result of the evaluation to the current
JspW i t er object.

Syntax

<x:out sel ect="XPat hExpression” [escapeXm ="{true|false}"]/>

Body Content

Empty.
Attributes
Name Dynamic Type Description
sel ect false String XPath expression to be evaluated.
Determines whether characters <,>,&,”,” in the
escapeXm true bool ean resulting string should be converted to their
P corresponding character entity codes. Default
value is true.
Description

The expression to be evaluated is specified via attribute sel ect and must be in
XPath syntax. The result of the evaluation is converted to a St ri ng as if the XPath
string() function were applied, and is subsequently written to the current
JspW i t er object.

This action is the equivalent of <%. . . % (display the result of an expression in the
JSP syntax) and <c: out > (display the result of an expression in the expression
language syntax).

144 JSTL 1.1 « November 2003

If escapeXmni is true, the following character conversions are applied:

Character Character Entity Code
< <
> > ;
& &anp;
‘ '
Y "

Chapter 11

XML Core Actions

145

11.4

146

<x:.set>

Evaluates an XPath expression and stores the result into a scoped variable.

Syntax

<x:set sel ect =" XPat hExpr essi on”
var =" var Nane”

Body Content

[scope="{page| request | sessi on| application}”"]/>

Empty.
Attributes
Name Dynamic Type Description
sel ect false String XPath expression to be evaluated.
Name of the exported scoped variable to hold
var false Strin the value specified in the action. The type of the
9 scoped variable is whatever type the sel ect
expression evaluates to.
scope false String Scope for var.
Description

Evaluates an XPath expression (specified via attribute sel ect) and stores the result
into a scoped variable (specified via attributes var and scope).

The mapping of XPath types to Java types is described in Section 11.1.4.

JSTL 1.1 « November 2003

CHAPTER 12

XML Flow Control Actions

xml tag library

The core set of XML actions provides the basic functionality to easily parse and
access XML data. Another important piece of functionality is the ability to iterate
over elements in an XML document, as well as conditionally process JSP code
fragments depending on the result of an XPath expression. The XML flow control
actions provide these capabilities.

12.1

Overview

The XML flow control actions provide flow control based on the value of XPath
expressions. These actions are therefore similar to the EL flow control actions (<c:if>,
<c:choose>, and <c:forEach>), except that they apply to XPath expressions.

The <x: i f > action has a sel ect attribute that specifies an XPath expression. The
expression is evaluated and the resulting object is converted to a bool ean according
to the semantics of the XPath bool ean() function:

= A number is true if an only if it is neither positive or negative zero nor NaN
= A node-set is true if and only if it is non-empty
= A string is true if and only if its length is non-zero

<x:if> renders its body if the result is true. For example:

<x:if select="%custoner/[location=" UK]">
UK based custoner
</ x:if>

147

148

The <x:choose> action selects one among a number of possible alternatives. It
consists of a sequence of <x:when> elements followed by an optional <x:otherwise>.
Each <x:when> element has a single attribute, sel ect, which specifies an XPath
expression. When a <x:choose> element is processed, each of the <x:when> elements
has its expression evaluated in turn, and the resulting object is converted to a
boolean according to the semantics of the XPath boolean function. The body of the
first, and only the first, <x:when> whose result is true is rendered.

If none of the test conditions of nested <x:when> tags evaluates to true, then the
body of an <x:otherwise> tag is evaluated, if present.

<x: choose>
<x:when sel ect =" $cust oner/first Nanme” >
Hel | o <x: out sel ect="%$custoner/firstNane”/>
</ x: when>
<x: ot herw se>
Hello ny friend
</ x: ot herw se>
</ x: choose>

The <x: f or Each> action evaluates the given XPath expression and iterates over the
result, setting the context node to each element in the iteration. For example:

<x: forEach sel ect =" $doc// aut hor” >
<x:out sel ect="@ane"/>
</ x: for Each>

JSTL 1.1 « November 2003

12.2

<x:if>

Evaluates the XPath expression specified in the sel ect attribute and renders its
body content if the expression evaluates to true.

Syntax

Syntax 1: Without body content
<x:if sel ect="XPat hExpr essi on”
var ="var Nane" [scope="{page|request|session|application}”]/>

Syntax 2: With body content
<x:if sel ect="XPat hExpr essi on”
[var="var Nane”] [scope="{page|request|session|application}”]>

body cont ent

</ x:if>

Body Content

JSP. If the test condition evaluates to true, the JSP container processes the body
content and then writes it to the current JspWi ter.

Attributes
Name | Dynamic Type Description
. The test condition that tells whether or not the
sel ect false String

body content should be processed.

Name of the exported scoped variable for the
var false String resulting value of the test condition. The type
of the scoped variable is Bool ean.

scope false String Scope for var.

Constraints

= If scope is specified, var must also be specified.

Description

Chapter 12 XML Flow Control Actions 149

The XPath expression specified via attribute sel ect is evaluated, and the resulting
object is converted to a bool ean according to the semantics of the XPath

bool ean() function. If true, the body content is evaluated by the JSP container and
the result is written to the current JspWi t er.

150 JSTL 1.1 « November 2003

12.3

<x:.choose>

Provides the context for mutually exclusive conditional execution.

Syntax

<x: choose>
body content (<x:when> and <x: ot herw se> subt ags)
</ x: choose>

Body Content

JSP. The body content is processed by the JSP container (at most one of the nested
elements will be processed) and written to the current JspWi t er.

Constraints

= The body of the <x:choose> action can only contain:
« White spaces
May appear anywhere around the <x:when> and <x:otherwise> subtags.
« 1 or more <x:when> actions
Must all appear before <x:otherwise>
« 0 or 1 <x:otherwise> action
Must be the last action nested within <x:choose>

Description

The <x:choose> action processes the body of the first <x: when> action whose test
condition evaluates to true. If none of the test conditions of nested <x: when> actions
evaluates to true, then the body of an <x: ot her wi se> action is processed, if
present.

Chapter 12 XML Flow Control Actions 151

12.4

<x:when>

Represents an alternative within an <x:choose> action.

Syntax

<x:when sel ect =" XPat hExpr essi on” >
body cont ent
</ x: when>

Body Content

JSP. If this is the first <x: when> action to evaluate to true within <x: choose>, the
JSP container processes the body content and then writes it to the current
JspWiter.

Attributes
Name | Dynamic Type Description
The test condition that tells whether or
sel ect false String not the body content should be
processed

Constraints

= Must have <x: choose> as an immediate parent.
= Must appear before an <x: ot her wi se> action that has the same parent.

Description

The XPath expression specified via attribute sel ect is evaluated, and the resulting
object is converted to a bool ean according to the semantics of the XPath

bool ean() function. If this is the first <x: when> action to evaluate to true within
<x: choose>, the JSP container processes the body content and then writes it to the
current JspWi ter.

152 JSTL 1.1 « November 2003

12.5

<x:.otherwise>

Represents the last alternative within a <x:choose> action.

Syntax

<x: ot herw se>
condi tional bl ock
</ x: ot herw se>

Body Content

JSP. If no <x:when> action nested within <x:choose> evaluates to true, the JSP
container processes the body content and then writes it to the current JspWi ter.

Attributes

None.

Constraints

= Must have <x:choose> as an immediate parent.
= Must be the last nested action within <x:choose>.

Description

Within a <x:choose> action, if none of the nested <x:when> test conditions evaluates
to true, then the body content of the <x:otherwise> action is evaluated by the JSP
container, and the result is written to the current JspWi t er.

Chapter 12 XML Flow Control Actions 153

12.6

154

<x:forEach>

Evaluates the given XPath expression and repeats its nested body content over the
result, setting the context node to each element in the iteration.

Syntax

<x: forEach[var="var Nanme”] sel ect="XPat hExpr essi on”>

body cont ent

</ x: for Each>

Body Content

[var St at us="var St at usNane”]

[begi n="begi n”] [end="end”] [step="step”]>

JSP. As long as there are items to iterate over, the body content is processed by the
JSP container and written to the current JspWi ter.

Attributes

Name

Dynamic

Type

Description

var

false

String

Name of the exported scoped variable for the
current item of the iteration. This scoped variable
has nested visibility. Its type depends on the
result of the XPath expression in the sel ect
attribute.

sel ect

false

String

XPath expression to be evaluated.

var St at us

false

String

Name of the exported scoped variable for the

status of the iteration. Object exported is of type
javax.servlet.jsp.jstl.core. LoopTagSt
at us. This scoped variable has nested visibility.

begi n

true

Iteration begins at the item located at the
specified index. First item of the collection has
index 0.

end

true

Iteration ends at the item located at the specified
index (inclusive).

step

true

int

Iteration will only process every st ep items of
the collection, starting with the first one.

JSTL 1.1 « November 2003

Constraints

= If specified, begi n must be >= 0.
= If end is specified and it is less than begi n, the loop is simply not executed.
= If specified, st ep must be >=1

Null & Error Handling

= If sel ect is empty, a JspExcept i on is thrown.

Description

Inside the body of the tag, the context for XPath expression evaluations is obtained

as follows:

= Vvariable, function, and namespace bindings operate as in the rest of JSTL

= the context node is the node whose representation would be exposed by 'var’
(whether or not the 'var' attribute is specified)

= the context position is the iteration 'count’ (with the same meaning as in
<c:forEach>)

= the context size is equal to the number of nodes in the node-set over which
<x:forEach> is iterating

Chapter 12 XML Flow Control Actions 155

156 JSTL 1.1 « November 2003

CHAPTER 13

XML Transform Actions
xml tag library

The transformation of XML documents using XSLT stylesheets is popular in many
web applications. The XML transform actions provide this capability so XSLT
transformations can be performed within JSP pages.

13.1

Overview

The XML transform actions support the transformation of XML documents with
XSLT stylesheets.

In the example below, an external XML document (retrieved from an absolute URL)
is transformed by a local XSLT stylesheet (context relative path). The result of the
transformation is written to the page.

<c:inmport url="http://acne.com custonmers” var="doc”"/>
<c:inport url="/WEB-|NF/xslt/custonerList.xsl” var="xslt”/>
<x:transform doc="%{doc}” xslt="${xslt}"/>

It is possible to set transformation parameters via nested <x:param> actions. For
example:

<x:transformdoc="%{doc}” xslt="%{xslt}">
<x: param nane="f 00" val ue="foo-val ue”/>
</ x:transfornp

157

It is sometimes the case that the same stylesheet transformation needs to be applied
multiple times to different source XML documents. A more efficient approach is to
process the transformation stylesheet once, and then save this "transformer"” object
for successive transformations. The specification allows implementations to support
transparent caching of transformer objects to improve performance.

158 JSTL 1.1 « November 2003

13.2 <x:transform>

Applies an XSLT stylesheet transformation to an XML document.

Syntax

Syntax 1: Without body contentt
<x:transform
{doc="XM_Docunent " | xm =" XM_Document "} xslt="XSLTStyl esheet"”
[{docSyst em d=" XM_Syst em d” | xnl Syst em dl=" XMLSyst em d”}]
[xsltSystem d=" XSLTSyst em d”]
[{var="var Nanme” [scope="scopeNanme”]|result="resultCbject”}]

Syntax 2: With a body to specify transformation parameters
<x:transform
{doc=" XM_Docurment " | xmi 1=" XM_Docunent "} xslt="XSLTStyl esheet”
[{docSystem d=" XM_Syst em d” | xm Syst em dl=" XMLSyst em d” }]
[xsltSystem d=" XSLTSyst em d”]
[{var="var Name” [scope="scopeNane”]|result="resultCbject”}]
<X: paramP actions
</ x:transfornr

Syntax 3: With a body to specify XML document and optional transformation parameters
<x:transform
xsl t =" XSLTStyl esheet”
[{docSyst em d=" XMLSyst em d” | xml Syst enl d1=" XMLSyst en d”}]
xsl t Syst em d=" XSLTSyst em d”
[{var="var Name” [scope="scopeNanme”]|result="resultCbject”}]
XML Docunent to parse
opti onal <x:parane actions
</ x: parse>

where scopeNane is { page| r equest | sessi on| appl i cati on}

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

1. Deprecated.

Chapter 13 XML Transform Actions 159

Attributes

Name Dyn Type Description
. Source XML document to be
String, Reader,
; transformed. (If exported by
j avax. xm . transf orm Sour ce,) .
<x:set>, it must correspond
doc true | org. w3c. dom Docunent, or
: to a well-formed XML
obj ect exported by -
.) document, not a partial
| <X:parse>, <x:set>.
document.)
String, Reader,
javax. xm . transform Sour ce, Deprecated’. Use attribute
xm true | org. w3c. dom Docunent, or -
: doc instead.
obj ect exported by
<X: parse>, <x:set>.
String, Reader or Transf_ormatlon stylesheet as
xslt true | . a String, Reader, or
javax. xm . transform Source .
Sour ce object.
The system identifier (URI)
| docSystem d true String for parsing the XML
document.
. Deprecated’. Use attribute
xm System d true String docSystenl d instead.
The system identifier (URI)
xsltSystem d | true String for parsing the XSLT
stylesheet.
Name of the exported
scoped variable for the
var false Strin transformed XML
9 document. The type of the
scoped variable is
org. w3c. dom Docunent .
scope false String Scope for var.
j avax. xm . transf orm Object that captures or _
resul t true Resul t processes the transformation
u result.
] 1. Names beginning with the string "xml" are reserved by the XML specification.

Null & Error Handling

= If the source XML document is null or empty, a JspExcept i on is thrown.
= If the source XSLT document is null or empty, a JspExcepti on is thrown.

| 160 JSTL 1.1 « November 2003

Description

The <x:transform> tag applies a transformation to an XML document (attribute doc
or the action’s body content), given a specific XSLT stylesheet (attribute xsl t). It
does not perform any validation against DTD's or Schemas.

Nothing prevents an implementation from caching Tr ansf or mer objects across
invocations of <x:transform>, though implementations should be careful they take
into account both the xsl t and xsl t Syst eml d attributes when deciding whether to
use a cached Tr ansf or mer or produce a new one. An implementation may assume
that any external entities that were referenced during parsing will not change values
during the life of the application.

The result of the transformation is written to the page by default. It is also possible
to capture the result of the transformation in two other ways:

= javax.xm .transform Resul t object specified by the resul t attribute.
= 0org.w3c. dom Document object saved in the scoped variable specified by the
var and scope attributes.

Chapter 13 XML Transform Actions 161

13.3

162

<X param=

Set transformation parameters. Nested action of <x:transform>.

Syntax

Syntax 1: Parameter value specified in attribute “value”
<x: param nanme="nane” val ue="val ue”/>

Syntax 2: Parameter value specified in the body content

<X: param nanme="nane” >
par anet er val ue

</ x: par anp

Body Content

JSP. The JSP container processes the body content, then the action trims it and
processes it further.

Attributes
Name Dynamic Type Description
name true String Name of the transformation parameter.
val ue true oj ect Value of the parameter.

Description

The <x: par an> action must be nested within <x: t r ansf or n®» to set
transformation parameters. The value of the parameter can be specified either via
the val ue attribute, or via the action’s body content.

JSTL 1.1 « November 2003

CHAPTER 14

Tag Library Validators

JSP 1.2 provides tag library validators (TLVs) as a mechanism for a tag library to
enforce constraints on the JSP document (the "XML view") associated with any JSP
page into which the tag library is imported. While the expectation is that TLVs used
by a tag library will typically enforce multi-tag constraints related to usage of the
library's tags themselves, a TLV is free to perform arbitrary validation of JSP
documents. A TLV returns to the container information about which elements, if
any, are in violation of its specific constraints, along with textual descriptions of the
syntactic violation.

JSTL provides TLVs that perform “reusable” validation; i.e. generic validation that
custom tag-library authors might wish to incorporate in their own tag libraries.
These tag libraries do not necessarily need to be substantial collections of tags; a
taglib may exist simply to provide site-specific validation logic. Just like tag libraries
whose primary focus is to provide new tags, such "validation-centric" tag libraries
may be configured and used by "back-end" developers in order to affect the "front-
end" JSP page author's environment.

This chapter covers the JSTL tag library validators.

14.1

Overview

JSTL exposes via TLVs two simple types of validations. These TLV classes may be
used in custom tag-library descriptors (TLDs) to restrict the page author's activities.
The two types of validation provided in this fashion are:

= ScriptFree (see Chapter 16 “Java APIs”)
Assurance of script-free pages

= PermittedTaglibs (see Chapter 16 “Java APIs”)
Enumeration of permitted tag libraries (including JSTL) on a page

163

164

For example, to prevent a JSP page from using JSP scriptlets and JSP declarations,
but still allow expressions, a developer could create the following TLD:

<?xm version="1.0" encodi ng="UTF-8" ?>

<taglib xm ns="http://java.sun.com xm /ns/j2ee"

xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schemalLocati on=

"http://java.sun.com xm /ns/j2ee web jsptaglibrary_2_ 0.xsd"
versi on="2.0">
<descri pti on>

Val i dates JSP pages to prohibit use of scripting el enments.

</ descri ption>
<tlib-version>1.0</tlib-version>
<j sp-version>2. 0</j sp. versi on>
<short-nanme>scri ptfree</short-name>
<uri>http://acme.com scriptfree</uri>

<val i dat or >

<val i dat or - cl ass>
javax.servlet.jsp.jstl.tlv.ScriptFreeTLV

</validator-class>

<init-paranpr
<par am nane>al | owDecl ar at i ons</ par am nane>
<par am val ue>f al se</ param val ue>

</init-paranp

<i nit-paranpr
<par am nane>al | owScri pt | et s</ par am nanme>
<par am val ue>f al se</ param val ue>

</init-paranp

<init-paranp
<par am name>al | owExpr essi ons</ par am name>
<par am val ue>t r ue</ par am val ue>

</init-paranp

<init-paranpr
<par am nane>al | owRTEXxpr essi ons</ par am nanme>
<par am val ue>t r ue</ par am val ue>

</init-paranp

</val i dat or >
</taglib>

Note that in JSP 2.0, scripting elements can also be disabled through the use of the
scri pting-inval i d configuration element (see the JSP specification for details).

JSTL 1.1 « November 2003

Similarly, to restrict a JSP page to a set of permitted tag-libraries (in the example
below, the JSTL “EL” tag libraries), a developer could create the following TLD:

<?xm version="1.0" encodi ng="UTF-8" ?>

<taglib xm ns="http://java. sun.com xm /ns/j2ee"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schemalLocati on=
"http://java.sun.com xm /ns/j2ee web jsptaglibrary_2_ 0.xsd"
versi on="2.0">
<descri pti on>
Restricts JSP pages to the JSTL tag libraries
</ descri pti on>
<tlib-version>1.0</tlib-version>
<j sp-version>2. 0</j sp. versi on>
<short-nanme>jstl taglibs only</scriptfree>
<uri>http://acme.com jstl Tagli bsOnly</uri>

<val i dat or >
<val i dat or - cl ass>
javax.servlet.jsp.jstl.tlv.PermttedTagli bsTLV
</validator-class>
<init-paranpr
<par am nane>perm ttedTagl i bs</ param nane>
<par am val ue>
http://java.sun.conjstl/core
http://java. sun.conijstl/xm
http://java.sun.confjstl/fmt
http://java. sun.conijstl/sql
</ par amval ue>
</init-paranp
</val i dat or >
</taglib>

Chapter 14 Tag Library Validators 165

166 JSTL 1.1 « November 2003

CHAPTER 15

Functions
function tag library

Just like custom actions allow developers to extend the JSP syntax with their own
customized behavior, the expression language defined in JSP 2.0 introduces the
notion of functions to allow developers to extend the capabilities of the Expression
Language.

JSTL is about the standardization, via these extension mechanisms, of behavior that
is commonly needed by page authors. In addition to defining a standard set of
actions, JSTL therefore also defines a standardized set of EL functions. These
functions are described in this chapter.

15.1

15.1.1

Overview

The JSTL functions are all grouped within the function tag library. They cover
various domains of functionality described below.

The | engt h Function

A feature sorely missed in JSTL 1.0 was the ability to easily get the size of a
collection. While the j ava. util. Col | ecti on interface defines a si ze() method,
it unfortunately does not conform to the JavaBeans architecture design pattern for
properties and cannot be accessed via the expression language.

167

The | engt h function has been designed to be very similar to the use of "length” in
EcmaScript. It can be applied to any object supported by the JSTL iteration action
<c:forEach>! and returns the length of the collection. When applied to a String, it
returns the number of characters in the string.

A sample use of | engt h is shown in the example below where scoped variable
at hl et es is a collection of At hl et es objects.

There are ${fn:length(athletes)} athletes representing ${country}

15.1.2 String Manipulation Functions

String manipulation functions allow page authors to:

= Change the capitalization of a string (t oLower Case, t oUpper Case)

= Get a subset of a string (substring, substringAfter, substringBefore)

= Trimastring (trim

= Replace characters in a string (r epl ace)

= Check if a string contains another string (i ndexOf, startsWth, endsWth,
contai ns, containslgnoreCase)

= split a string (spl i t) into an array, and join an array into a string (j oi n)

= Escape XML characters in the string (escapeXm)

1. Note that the support in <c:forEach> for strings representing lists of coma separated values has been
deprecated. The proper way to process strings of tokens is via <c:forTokens> or via functions spl i t and
join.

168 JSTL 1.1 « November 2003

The example below shows simple uses of these functions.

<% - truncate nane to 30 chars and display it in uppercase --%
${fn: t oUpper Case(fn: substring(narme, 0, 30))}

<% - Display the text value prior to the first '*' character --%
${fn:substringBefore(text, "*')}

<% - Scoped variable "custld" may contain whitespaces at the
beginning or end. Trimit first, otherwise we end up with +'s in
the URL --%
<c:url var="nyUl" val ue="${base}/cust">

<c: param nanme="cust 1 d" value="${fn:trimcustld)}"/>
</c:iurl>

<% - Display the text in between brackets --%
${fn:substring(text, fn:indexO(text, '(')+1,
fn:indexOf (text, ")'))}

<% - Display the name if it contains the search string --%

<c:if test="${fn:containslgnoreCase(nane, searchString)}">
Found nane: ${nane}

</fc:if>

<% - Display the last 10 characters of the text value --%
${fn:substring(text, fn:length(text)-10)}

<% - Display text value with bullets instead of '-' --%
${fn:replace(text, '-', '•')}

Chapter 15 Functions 169

170

While one can always use <c:out> to make sure that XML characters are properly
escaped, the function escapeXm provides a syntax that is more concise as can be
seen in the following example:

<% - Escape XM characters when displaying the value of a
request paraneter (avoid cross-site scripting) --%

<i nput name="user Name" val ue="${fn: escapeXnl (param user Nane) }">

<% - Escape XM. characters when passing an attribute value to
an action --%

<% - Using <c:out> with <c:set>-%
<c:set var="naneEscaped">
<c:out value="${nanme}"/>
</c:set>
<ny:tag nanme="${naneEscaped}"/>

<% - Using <c:out> with <jsp:attribute>--%
<ny:tag>
<jsp:attribute name="nane">
<c:out value="${nane}"/>
</jsp:attribute>
</ ny:tag>

<% - Using fn:escapexm --%
<nmy:tag title="${fn:escapeXm (nanme)}"/>

JSTL 1.1 « November 2003

15.2

fn:contains

Tests if a string contains the specified substring.

Syntax

fn:contains(string, substring) - bool ean

Arguments & Result

Argument Type Description
string String The input string on which the function is applied.
substring String The substring tested for.

t r ue if the character sequence represented by the
Result bool ean subst ri ng argument exists in the character sequence
represented by the st ri ng argument, f al se otherwise.

Null & Error Handling

« If stringisnull, itis processed as an empty string.
= If substring is null, it is processed as an empty string.

Description

Returns true if the character sequence represented by the substring argument exists
in the character sequence represented by the string argument, false otherwise.

If subst ri ng is empty, this matches the beginning of the string and the value
returned is true.

Essentially, f n: cont ai ns returns the value of:
fn:indexOf (string, substring) '= -1.

Chapter 15 Functions 171

15.3 fn:containsignoreCase

Tests if a string contains the specified substring in a case insensitive way.

Syntax

fn: cont ai nsl gnoreCase(string, substring) - bool ean

Arguments & Result

Argument Type Description
string String The input string on which the function is applied.
substring String The substring tested for.

t r ue if the character sequence represented by the
subst ri ng argument exists in the character sequence
represented by the st ri ng argument ignoring case
differences, f al se otherwise.

Result bool ean

Null & Error Handling

= If stringisnull, itis processed as an empty string.
= If substring is null, it is processed as an empty string.

Description

The behavior is the same as f n: cont ai ns, except that the comparison is done in a
case insensitive way, as in:
fn:contains(fn:toUpperCase(string), fn:toUpperCase(substring)).

172 JSTL 1.1 « November 2003

15.4 fn:endsWith

Tests if a string ends with the specified suffix.

Syntax

fn:endsWth(string, suffix) - bool ean

Arguments & Result

Argument Type Description
string String The input string on which the function is applied.
suffix String The suffix to be matched.

t r ue if the character sequence represented by the
Result bool ean suf fi x argument is a suffix of the character sequence
represented by the st ri ng argument, f al se otherwise.

Null & Error Handling

« If stringisnull, itis processed as an empty string.
= If substring is null, it is processed as an empty string.

Description

Behavior is similar to f n: st art sWt h, except that the substring must be at the end
of the input string.

If suf fi x is empty, this matches the end of the string and the value returned is true.

Chapter 15 Functions 173

15.5

fn:escapeXml

Escapes characters that could be interpreted as XML markup.

Syntax

fn:escapeXm (string) - String

Arguments & Result

Argument Type Description
string String The input string on which the conversion is applied.
Result String Converted string.

Null & Error Handling

= If stringisnull, itis processed as an empty string.

Description

Escapes characters that could be interpreted as XML markup. The conversions are
the same as the ones applied by <c:out> when attribute escapeXmi is set to true.
See Section 4.2.

If string is an empty string, an empty string is returned.

174 JSTL 1.1 « November 2003

15.6

fn:indexOf

Returns the index within a string of the first occurrence of a specified substring.

Syntax

fn:indexOr(string, substring) - int

Arguments & Result

Argument Type Description
string String The input string on which the function is applied.
substring String The substring to search for in the input string.

If the substring argument is a substring of the input string,
Result int returns the index of the first character of the first such

substring; if it does not occur as a substring, -1 is returned.

Null & Error Handling

« If stringisnull, itis processed as an empty string.
= If substring is null, it is processed as an empty string.

Description

Returns the index (0-based) within a string of the first occurrence of a specified
substring according to the semantics of method i ndexCf (subst ri ng) of the Java
class j ava. | ang. St ri ng, with the exception of the "Null and Error Handling"
processing described above.

If subst ri ng is empty, this matches the beginning of the string and the value
returned is 0.

Chapter 15 Functions 175

15.7

fn:join
Joins all elements of an array into a string.

Syntax

fn:join(array, separator) - String

Arguments & Result

Argument Type Description
array String[] Array of strings to be joined.
. String to separate each element of the
separ at or String . . .
array in the resulting string.
Result String All array elements joined into one string.

Null & Error Handling

=« If array is null, an empty string is returned.
= |f separator is null, it is processed as an empty string.

Description

Joins all elements of the string array into a string.

If separator is an empty string, then the elements are joined together without any
separator.

176 JSTL 1.1 « November 2003

15.8 fn:length

Returns the number of items in a collection, or the number of characters in a string.

Syntax

fn:length(input) - integer

Arguments & Result

Argument

Type

Description

i nput

Any of the types supported for the i t ens
attribute in the <c:forEach> action, or
String.

The input collection or string
on which the length is
computed.

Result

i nt

Length of the collection or the
string.

Null & Error Handling

=« If i nput is null, it is treated as an empty collection and the value returned is 0.

= If input is an empty string, the value returned is 0.

Chapter 15 Functions 177

15.9

fn:replace

Returns a string resulting from replacing in an input string all occurrences of a
"before” substring into an "after” substring.

Syntax

fn:replace(inputString, beforeSubstring, afterSubstring) - String

Arguments & Result

Argument Type Description
i nput Stri ng String The !nput string on which the replace function is
applied.
bef or eSubstri ng String The "before" substring to be replaced.
after Substring String The a_fter substring that replaces the "before
substring.
Result String The string that results from replacing

bef or eSubst ri ng with af t er Substri ng.

Null & Error Handling

=« IfinputString isnull, itis processed as an empty string.
= If beforeSubstring is null, it is processed as an empty string.
= Ifafter Substri ng is null, it is processed as an empty string.

Description

All occurrences of bef or eSubst ri ng are replaced by af t er Subst ri ng. The text
replaced is not reprocessed for further replacements.

If i nput stri ng is an empty string, an empty string is returned.
If bef or eSubstri ng is an empty string, the input string is returned.

If af t er Subst ri ng is an empty string, all occurrences of bef or eSubstri ng are
removed from i nput Stri ng.

178 JSTL 1.1 « November 2003

15.10

fn:split

Splits a string into an array of substrings.

Syntax

fn:split(string, delimters) - String[]

Arguments & Result

Argument Type Description
. . The input string that gets split into
string String an array of substrings.
delimters String Ezllgrlitﬁé characters used to split
Result String[] Array of strings.

Null & Error Handling

« If stringisnull, itis processed as an empty string.
=« Ifdelimters isnull itis processed as an empty string.

Description

Breaks a string into tokens according to the semantics of the Java class
java.util.StringTokeni zer, with the exception of the "Null and Error
Handling" described above.

If the input string is empty, the array returned contains one element consisting of an
empty string (no splitting occurred, original string is returned).

If del i mi t er s is an empty string, the array returned contains one element
consisting of the input string (no splitting occurred, original string is returned).

Delimiter characters themselves are not treated as tokens, and are not included in
any token.

Chapter 15 Functions 179

15.11

fn:startsWith

Tests if a string starts with the specified prefix.

Syntax

fn:startsWth(string, prefix) - bool ean

Arguments & Result

Argument Type Description
string String The input string on which the function is applied.
prefix String The prefix to be matched.

t r ue if the character sequence represented by the
Result bool ean prefi x argument is a prefix of the character sequence
represented by the st ri ng argument, f al se otherwise.

Null & Error Handling

« If stringisnull, itis processed as an empty string.
=« If prefix isnull, itis processed as an empty string.

Description

Tests if an input string starts with the specified prefix according to the semantics of
method startsWth(String prefix) of theJava class j ava. | ang. Stri ng,
with the exception of the "Null and Error Handling" processing described above.

If prefi x is empty, this matches the beginning of the string and the value returned
is true.

180 JSTL 1.1 « November 2003

15.12

fn:substring

Returns a subset of a string.

Syntax

fn:substring(string, beginlndex, endlndex) - String

Arguments & Result

Argument Type Description
string String nglzzdp.ut string on which the substring function is
begi nl ndex i nt The beginning index (0-based), inclusive.
endl ndex i nt The ending index (0-based), exclusive .
Result String The substring of the input string.

Null & Error Handling

« If stringisnull, itis processed as an empty string.

= If begi nl ndex is greater than the last index of the input string, an empty string
is returned.

= If begi nl ndex is less than 0, its value is adjusted to be 0.

= If endl ndex is less than 0 or greater than the length of the input string, its value
is adjusted to be the length of the input string (the substring therefore starts at
begi nl ndex and extends to the end of the input string).

= If endl ndex is less than begi nl ndex, an empty string is returned.

Description

Returns a substring of the input string according to the semantics of method
substring() ofthelJavaclassjava. | ang. Stri ng, with the exception of the "Null
and Error Handling" processing described above.

Using a 0-based indexing scheme, the substring begins at the specified begi nl ndex
and extends to the character at index endl ndex-1. The length of the substring is
therefore endl ndex- begi nl ndex.

It is suggested to use the value -1 for endl ndex to extend the substring to the end of
the input string.

Chapter 15 Functions 181

15.13

fn:substringAfter

Returns a subset of a string following a specific substring.

Syntax

fn:substringAfter(string, substring) - String

Arguments & Result

Argument Type Description
string String nglzzdput string on which the substring function is
substrin Strin The substring that delimits the beginning of the subset
9 9 of the input string to be returned.
Result String The substring of the input string.

Null & Error Handling

« If stringisnull, itis processed as an empty string.
= If substring is null, it is processed as an empty string.

Description

The substring returned starts at the first character after the substring matched in the
input string, and extends up to the end of the input string.

If string is an empty string, an empty string is returned.

If subst ri ng is an empty string, it matches the beginning of the input string and
the input string is returned. This is consistent with the behavior of function
i ndexOF , where an empty substring returns index 0.

If subst ri ng does not occur in the input string, an empty string is returned.

182 JSTL 1.1 « November 2003

15.14

fn:substringBefore

Returns a subset of a string before a specific substring.

Syntax

fn:substringBefore(string, substring) - String

Arguments & Result

Argument Type Description
string String nglzzdput string on which the substring function is
substrin Strin The substring that delimits the end of subset of the input
9 9 string to be returned.
Result String The substring of the input string.

Null & Error Handling

« If stringisnull, itis processed as an empty string.
= If substring is null, it is processed as an empty string.

Description

The substring returned starts at the first character in the input string and extends up
to the character just before the substring matched in the input string.

If string is an empty string, an empty string is returned.

If subst ri ng is an empty string, it matches the beginning of the input string and an
empty string is returned. This is consistent with the behavior of function i ndexCf ,
where an empty substring returns index 0.

If subst ri ng does not occur in the input string, an empty string is returned.

Chapter 15 Functions 183

15.15 fn:toLowerCase

Converts all of the characters of a string to lower case.

Syntax

fn:toLowerCase(string) - String

Arguments & Result

Argument Type Description

The input string on which the transformation to lower

string String case is applied.

Result String The input string transformed to lower case.

Null & Error Handling

= Ifstringisnull itis treated as an empty string and an empty string is returned.

Description

Converts all of the characters of the input string to lower case according to the
semantics of method t oLower Case() of the Java class j ava. | ang. Stri ng.

184 JSTL 1.1 « November 2003

15.16

fn:toUpperCase

Converts all of the characters of a string to upper case.

Syntax

fn:toUpper Case(string)

Arguments & Result

- String

Argument Type Description
. . The input string on which the the transformation to
string String . .
upper case is applied.
Result String The input string transformed to upper case.

Null & Error Handling

= Ifstringisnull itis treated as an empty string and an empty string is returned.

Description

Converts all of the characters of the input string to upper case according to the

semantics of method t oUpper Case() of the Java class j ava. | ang. Stri ng.

Chapter 15

Functions

185

15.17 fn:trim

Removes white space from both ends of a string.

Syntax

fn:trimistring) - String

Arguments & Result

Argument Type Description
string String The input string on which the the trim is applied.
Result String The trimmed string.

Null & Error Handling

= If stringisnull itis treated as an empty string and an empty string is returned.

Description

Removes white space from both ends of a string according to the semantics of
method t ri n() of the Java class j ava. | ang. Stri ng.

186 JSTL 1.1 « November 2003

CHAPTER 16

Java APIs

This chapter describes the Java APIs exposed by the JSTL specification. The content
of this chapter is generated automatically from Javadoc annotations embedded into
the actual Java classes and interfaces of the implementation. This ensures that both
the specification and implementation are synchronized.

187

188 JSTL 1.1 « November 2003

Package .
javax.servlet.jsp.jstl.core

Class Summary

I nterfaces

LoopTagqgg JSTL allows devel opers to write custom iteration tags by implementing the LoopTag
interface.

LoopTagSt at us,gg Exposes the current status of an iteration.

Classes

Condi ti onal TagSupport, Abstract classthat facilitates implementation of conditional actions where the boolean

90 result is exposed as a JSP scoped variable.

Confi gq93 Class supporting access to configuration settings.

LoopTagSupport 593 Base support class to facilitate implementation of iteration tags.

189

javax.servlet.jsp.jstl.core

Conditional TagSupport

Declaration
public abstract class Conditional TagSupport extends TagSupport

j ava. |l ang. oj ect

|
+- - TagSuppor t

+--javax.servlet.jsp.jstl.core. Conditional TagSupport

Description
Abstract classthat facilitatesimplementation of conditional actionswhere the boolean result is exposed as a JSP
scoped variable. The boolean result may then be used as the test condition in a <c:when> action.
This base class provides support for:
« Conditiona processing of the action’s body based on the returned value of the abstract method
condi tion().

« Storing theresult of condi ti on() asaBool ean object into a JSP scoped variable identified by
attributesvar and scope.

Member Summary

Constructors
Condi ti onal TagSupport () 191
Base constructor to initialize local state.
Methods
protected abstract condition() 91
bool ean Subclasses implement this method to compute the boolean result of the conditional
action.

int doStartTag() 191
Includesitsbody if condi ti on() evaluatesto true.
void release() 91
Releases any resources this Conditional TagSupport may have (or inherit).
voi d setScope(java.lang.String scope) g1
Setsthe 'scope’ attribute.
void setVar(java.lang.String var)qg;
Setsthe'var’ attribute.

Inherited Member Summary

Methodsinherited from class Obj ect

clone(), equal s(Cbject), finalize(), getd ass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

190

Constructors

Conditional TagSupport()
publi ¢ Conditional TagSupport ()

Base constructor to initialize local state. Aswith TagSuppor t , subclasses should not implement
constructors with arguments, and no-argument constructors implemented by subclasses must call the
superclass constructor.

M ethods

condition()

protected abstract bool ean condition()
throws JspTagException

Subclasses implement this method to compute the boolean result of the conditional action. This method is
invoked once per tag invocation by doSt art Tag() .

Returns: aboolean representing the condition that a particular subclass uses to drive its conditional logic.

Throws:
JspTagExcepti on

doStartTag()

public int doStartTag()
t hrows JspException

Includesitsbody if condi ti on() evaluatesto true.

Throws:
JspExcepti on

release()

public void rel ease()

Releases any resources this Conditional TagSupport may have (or inherit).

setScope(String)
public void setScope(java.lang. String scope)
Setsthe ’scope’ attribute.

Parameters:
scope - Scope of the 'var’ attribute

setVar (String)
public void setVar(java.lang. String var)

Setsthe’'var’ attribute,

191

Parameters:
var - Name of the exported scoped variable storing the result of condi ti on() .

192

javax.servlet.jsp.jstl.core

Config

Declar ation

public class Config

j ava. | ang. Qbj
|

ect

+--javax.servlet.jsp.jstl.core.Config

Description

Class supporting access to configuration settings.

Member Summary

Fields
j ava

j ava

j ava
j ava
j ava

j ava

Constructors

M ethods

j ava

j ava

j ava

j ava

j ava

. I ang.

. I ang.

.l ang.
.l ang.
.l ang.

. I ang.

. I ang.

.l ang.

. I ang.

. I ang.

.l ang.

static
String
static
String

static
String
static
String
static
String
static
String

static
oj ect

static
oj ect

static
oj ect
static
oj ect

static
hj ect

FMI_FALLBACK _LOCALE; g4
Name of configuration setting for fallback locale
FMI_LOCALE; g4
Name of configuration setting for application- (as opposed to browser-) based
preferred locale
FMI_LOCALI ZATI ON_CONTEXT1g4
Name of configuration setting for i18n localization context
FMT_TI ME_ZONE; g5
Name of localization setting for time zone
SQL_DATA_SOURCE; g5
Name of configuration setting for SQL data source
SQL_MAX_RO/8; g5
Name of configuration setting for maximum number of rows to be included in SQL
query result

Config() 105

find(PageContext pc, java.lang.String name)qgs
Finds the value associated with a specific configuration setting identified by its context
initialization parameter name.
get (javax.servlet. http. HtpSessi on session, java.lang. String
name) 195
Looks up a configuration variable in the “ session” scope.
get (PageCont ext pc, java.lang.String name, int scope)gg
Looks up a configuration variable in the given scope.
get (j avax. servl et. Servl et Cont ext context, java.lang.String
name) 196
Looks up a configuration variable in the “ application” scope.
get (j avax. servl et. Servl et Request request, java.lang.String
name) 196
Looks up a configuration variable in the “request” scope.

193

Member Summary

static

static

static

static

static

static

static

static

void

voi d

voi d

void

voi d

voi d

void

voi d

renove(j avax. servlet. http. Ht pSessi on session,
java.lang. String nane) 197
Removes a configuration variable from the “session” scope.
renove(PageCont ext pc, java.lang.String nanme, int scope)g7
Removes a configuration variable from the given scope.
renove(javax. servl et. Servl et Cont ext context, java.lang. String
name) 197
Removes a configuration variable from the “application” scope.
renove(j avax. servl et. Servl et Request request, java.lang. String
name) 197
Removes a configuration variable from the “request” scope.
set (javax.servlet. http. H t pSessi on session, java.lang. String
nane, java.lang. Object val ue)q g7
Sets the value of a configuration variable in the “session” scope.
set (PageCont ext pc, java.lang.String nane, java.lang. Ooject
val ue, int scope)qgg
Sets the value of a configuration variable in the given scope.
set (j avax. servl et. Servl et Cont ext context, java.lang.String
nane, java.lang. Object val ue)gg
Sets the value of a configuration variable in the “application” scope.
set (j avax. servl et. Servl et Request request, java.lang. String
nane, java.lang. Object val ue)9g
Sets the value of a configuration variable in the “request” scope.

Inherited Member Summary

Methodsinherited from class Obj ect

clone(), equal s(Object),
toString(), wait(),

finalize(), getd ass(), hashCode(), notify(), notifyAl(),

wai t (1 ong), wait(long, int)

Fields

FMT _FALLBACK LOCALE
al java.lang. String FMI_FALLBACK LOCALE

public static fin

Name of configuration setting for fallback locale

FMT_LOCALE

public static final

java.lang. String FMI_LOCALE

Name of configuration setting for application- (as opposed to browser-) based preferred locale

FMT_LOCALIZATION_CONTEXT

public static final

java.lang. String FMI_LOCALI ZATI ON_CONTEXT

Name of configuration setting for i18n localization context

194

FMT_TIME_ZONE
public static final java.lang.String FMI_TI ME_ZONE

Name of localization setting for time zone

SQL_DATA_SOURCE
public static final java.lang.String SQ._DATA SOURCE
Name of configuration setting for SQL data source

SQL_MAX_ROWS
public static final java.lang.String SQ_MAX_ ROAS

Name of configuration setting for maximum number of rows to be included in SQL query result

Constructors

Config()
public Config()

M ethods

find(PageContext, String)

public static java.lang. Object find(PageContext pc, java.lang.String nane)

Finds the value associated with a specific configuration setting identified by its context initialization
parameter name.

For each of the JSP scopes (page, request, session, application), get the value of the configuration variable
identified by nanme using method get () . Return as soon as a non-null valueis found. If no valueisfound,
get the value of the context initialization parameter identified by nane.

Parameters:
pc - Page context in which the configuration setting is to be searched

nane - Context initialization parameter name of the configuration setting

Returns. Thej ava. | ang. Obj ect associated with the configuration setting identified by nane, or null
if it isnot defined.

get(HttpSession, String)

public static java.lang. Object get(javax.servlet.http.HtpSession session,
java.l ang. String nane)

Looks up a configuration variable in the “session” scope.

The lookup of configuration variables is performed asif each scope had its own name space, that is, the
same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
sessi on - Session object in which the configuration variable is to be looked up

195

narre - Configuration variable name

Returns. Thej ava. | ang. Obj ect associated with the configuration variable, or null if itis not
defined, if sessionisnull, or if the session isinvalidated.

get(PageContext, String, int)
public static java.lang. Object get(PageContext pc, java.lang.String name, int scope)
Looks up a configuration variable in the given scope.

The lookup of configuration variablesis performed as if each scope had its own name space, that is, the
same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
pc - Page context in which the configuration variable is to be looked up

narre - Configuration variable name
scope - Scope in which the configuration variable is to be looked up

Returns: Thej ava. | ang. Obj ect associated with the configuration variable, or null if itis not
defined.

get(ServletContext, String)

public static java.lang. Cbject get(javax.servlet. ServletContext context,
java.lang. String nane)

Looks up a configuration variable in the “ application” scope.

The lookup of configuration variablesis performed as if each scope had its own name space, that is, the
same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
cont ext - Servlet context in which the configuration variableis to be looked up

narre - Configuration variable name

Returns. Thej ava. | ang. Obj ect associated with the configuration variable, or null if itis not
defined.

get(ServietRequest, String)

public static java.lang. Cbject get(javax.servlet. ServletRequest request,
java.l ang. String nane)

Looks up a configuration variablein the “request” scope.

The lookup of configuration variablesis performed as if each scope had its own name space, that is, the
same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
request - Request object in which the configuration variable is to be looked up

nane - Configuration variable name

Returns. Thej ava. | ang. Qbj ect associated with the configuration variable, or null if itis not
defined.

196

remove(HttpSession, String)
public static void renpve(javax.servlet.http. HtpSession session, java.lang.String nane)

Removes a configuration variable from the “ session” scope.

Removing a configuration variable is performed as if each scope had its own namespace, that is, the same
configuration variable name in one scope does not impact one stored in a different scope.

Parameters:
sessi on - Session object from which the configuration variable is to be removed

narre - Configuration variable name

remove(PageContext, String, int)
public static void renpve(PageContext pc, java.lang.String name, int scope)

Removes a configuration variable from the given scope.

Removing a configuration variable is performed asif each scope had its own namespace, that is, the same
configuration variable name in one scope does not impact one stored in a different scope.

Parameters:
pc - Page context from which the configuration variable is to be removed

nane - Configuration variable name

scope - Scope from which the configuration variable is to be removed

remove(ServletContext, String)
public static void renove(javax.servlet. Servl et Context context, java.lang.String nane)

Removes a configuration variable from the “ application” scope.

Removing a configuration variable is performed asif each scope had its own namespace, that is, the same
configuration variable name in one scope does not impact one stored in a different scope.

Parameters:
cont ext - Servlet context from which the configuration variable is to be removed

nane - Configuration variable name

remove(ServletRequest, String)
public static void renove(javax.servlet. Servl et Request request, java.lang.String nane)

Removes a configuration variable from the “regquest” scope.

Removing a configuration variable is performed as if each scope had its own namespace, that is, the same
configuration variable name in one scope does not impact one stored in a different scope.

Parameters:
request - Request abject from which the configuration variableis to be removed

nane - Configuration variable name

set(HttpSession, String, Object)

public static void set(javax.servlet.http.HtpSession session, java.lang. String nane,
java. |l ang. Qbj ect val ue)

Sets the value of a configuration variable in the “session” scope.

197

Setting the value of a configuration variable is performed as if each scope had its own namespace, that is,
the same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
sessi on - Session object in which the configuration variable isto be set

narre - Configuration variable name

val ue - Configuration variable value

set(PageContext, String, Object, int)

public static void set(PageContext pc, java.lang.String nane, java.lang.Object val ue,
int scope)

Sets the value of a configuration variable in the given scope.

Setting the value of a configuration variable is performed as if each scope had its own namespace, that is,
the same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
pc - Page context in which the configuration variable is to be set

narre - Configuration variable name
val ue - Configuration variable value
scope - Scope in which the configuration variable isto be set

set(ServletContext, String, Object)

public static void set(javax.servlet. ServletContext context, java.lang.String nane,
java.l ang. Obj ect val ue)

Sets the value of a configuration variable in the “ application” scope.

Setting the value of a configuration variable is performed asif each scope had its own namespace, that is,
the same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
cont ext - Servlet context in which the configuration variableis to be set

nane - Configuration variable name

val ue - Configuration variable value

set(ServletRequest, String, Object)

public static void set(javax.servlet. Servl et Request request, java.lang.String naneg,
java.l ang. Obj ect val ue)

Sets the value of a configuration variable in the “regquest” scope.

Setting the value of a configuration variable is performed asif each scope had its own namespace, that is,
the same configuration variable name in one scope does not replace one stored in a different scope.

Parameters:
request - Request abject in which the configuration variable is to be set

nane - Configuration variable name

val ue - Configuration variable value

198

javax.servlet.jsp.jstl.core

LoopTag

Declaration
public interface LoopTag

All Known Implementing Classes. LoopTagSupport 5g3

Description
JSTL allows developers to write custom iteration tags by implementing the LoopTag interface. Thisis not to be
confused withj avax. servl et.j sp.tagext.|terati onTag asdefinedinJSP 1.2. LoopTag

establishes a mechanism for iteration tags to be recognized and for type-safe implicit collaboration with custom
subtags.

In most cases, it will not be necessary to implement this interface manually, for a base support class
(LoopTagSupport) isprovided to facilitate implementation.

Member Summary

Methods
java.lang. Cbject getCurrent() 199
Retrieves the current item in the iteration.
LoopTagSt at us get LoopStat us() 199

Retrieves a’status’ object to provide information about the current round of the
iteration.

M ethods

getCurrent()
public java.lang. Object getCurrent()

Retrieves the current item in the iteration. Behaves idempotently; calling getCurrent() repeatedly should
return the same Object until the iteration is advanced. (Specificaly, calling getCurrent() does not advance
theiteration.)

Returns: the current item as an object

getL oopStatus()
public javax.servlet.jsp.jstl.core.LoopTagSt at us,gg get LoopSt at us()
Retrieves a’status object to provide information about the current round of the iteration.
Returns. The LoopTagStatus for the current LoopTag.

199

javax.servlet.jsp.jstl.core

L oopTagStatus

Declaration
public interface LoopTagStatus

Description

Exposes the current status of an iteration. JSTL provides a mechanism for LoopTags to return information about
the current index of the iteration and convenience methods to determine whether or not the current round is
either thefirst or last in the iteration. It also lets authors use the status object to obtain information about the
iteration range, step, and current object.

Environments that require more status can extend this interface.

Member Summary

Methods

java.lang. | nteger getBegin()go
Returns the value of the 'begin’ attribute for the associated tag, or null if no’begin’
attribute was specified.

int getCount ()01
Retrieves the “count” of the current round of the iteration.
java.lang. Cbject getCurrent()ogq

Retrieves the current item in the iteration.

java.lang. | nteger getEnd() g1
Returns the value of the 'end’ attribute for the associated tag, or null if no’end’
attribute was specified.

int getlndex() o1

Retrieves the index of the current round of the iteration.

java.lang. I nteger getStep() o1
Returns the value of the 'step’ attribute for the associated tag, or null if no 'step’
attribute was specified.

bool ean isFirst() o1
Returns information about whether the current round of the iteration is the first one.
bool ean isLast () 92

Returns information about whether the current round of the iteration is the last one.

M ethods

getBegin()

public java.lang.|nteger getBegin()
Returns the value of the 'begin’ attribute for the associated tag, or null if no "begin’ attribute was specified.
Returns: the’begin’ value for the associated tag, or null if no’begin’ attribute was specified

200

getCount()
public int getCount()

Retrievesthe “ count” of the current round of the iteration. The count isarelative, 1-based sequence number
identifying the current “round” of iteration (in context with all rounds the current iteration will perform).

As an example, an iteration with begin = 5, end = 15, and step = 5 produces the counts 1, 2, and 3 in that
order.

Returns; the 1-based count of the current round of the iteration

getCurrent()
public java.lang. Object getCurrent()

Retrieves the current item in the iteration. Behaves idempotently; calling getCurrent() repeatedly should
return the same Object until the iteration is advanced. (Specifically, calling getCurrent() does not advance
theiteration.)

Returns: the current item as an object

getEnd()
public java.lang.|nteger getEnd()
Returns the value of the ’end’ attribute for the associated tag, or null if no’end’ attribute was specified.
Returns: the’end value for the associated tag, or null if no’end’ attribute was specified

getIndex()
public int getlndex()

Retrieves the index of the current round of the iteration. If iteration is being performed over a subset of an
underlying array, java.lang.Collection, or other type, the index returned is absolute with respect to the
underlying collection. Indices are 0-based.

Returns: the O-based index of the current round of the iteration

getStep()
public java.lang.|nteger getStep()

Returns the value of the 'step’ attribute for the associated tag, or null if no 'step’ attribute was specified.
Returns. the’'step’ value for the associated tag, or null if no 'step’ attribute was specified

isFirst()
publi c bool ean isFirst()
Returnsinformation about whether the current round of theiteration isthefirst one. This current round may

bethefirst’ even when getindex() != 0, for 'index’ refers to the absolute index of the current item’ in the
context of itsunderlying collection. It isawaysthat case that atrue result from isFirst() implies getCount()

Returns: true if the current round isthefirst in theiteration, f al se otherwise.

201

isLast()
publi ¢ bool ean isLast ()

Returns information about whether the current round of the iteration isthe last one. Aswith isFirst(),
subsetting is taken into account. isLast() doesn’t necessarily refer to the status of the underlying Iterator; it

refers to whether or not the current round will be the final round of iteration for the tag associated with this
LoopTagStatus.

Returns: t rue if the current round isthe last in the iteration, f al se otherwise.

202

javax.servlet.jsp.jstl.core

L oop TagSupport

Declaration
public abstract class LoopTagSupport extends TagSupport inplenents LoopTagigg

j ava. |l ang. Ooj ect

I
+- - TagSuppor t

+--javax.servlet.jsp.jstl.core.LoopTagSupport

All Implemented Interfaces. LoopTag;gg

Description
Base support class to facilitate implementation of iteration tags.

Since most iteration tags will behave identically with respect to actua iterative behavior, JSTL provides this
base support classto facilitate implementation. Many iteration tags will extend this and merely implement the
hasNext () and next () methodsto provide contents for the handler to iterate over.

In particular, this base class provides support for:
« [teration control, based on protected pr epar e(), next (), and hasNext () methods

Subsetting (begi n, end, st ep>functionality, including validation of subset parameters for sensibility)
itemretrieval (get Current ())
statusretrieval (LoopTagSt at us)

 exposing attributes (set by var and var St at us attributes)

In providing support for these tasks, LoopTagSupport contains certain control variables that act to modify
the iteration. Accessors are provided for these control variables when the variables represent information
needed or wanted at tranglation time (e.g., var, var St at us). For other variables, accessors cannot be
provided here since subclasses may differ on their implementations of how those accessors are received. For
instance, one subclass might accept a St r i ng and convert it into an object of a specific type by using an
expression evaluator; others might accept objects directly. Still others might not want to expose such
information to outside control.

Member Summary

Fields
protected int beginygs
Starting index (' begin’ attribute)
protected bool ean begi nSpecified,gs
Boolean flag indicating whether "begin’ was specified.
protected int endygs
Ending index of the iteration ("end’ attribute).

protected bool ean endSpecified,gs
Boolean flag indicating whether 'end’ was specified.

203

Member Summary

pr ot ect ed
java.lang. String
prot ected
java.lang. String
protected int

prot ect ed bool ean

Constructors
M ethods
int
voi d
voi d
int

j ava. |l ang. Obj ect
LoopTagSt at us
protected abstract
bool ean

protected abstract
j ava. |l ang. Qbj ect
protected abstract
voi d

voi d

voi d

voi d

protected void

protected void

protected void

item d205
Attribute-exposing control
st at usl d205
Attribute-exposing control
stepzes
Iteration step ('step’ attribute)
st epSpeci fi edygs
Boolean flag indicating whether "step’ was specified.

LoopTagSupport () 2ge
Constructs a new LoopTagSupport.

doAf t er Body() 206
Continues the iteration when appropriate —- that is, if we () have more items and (b)
don’t run over our 'end’ (given our 'step’).
doCat ch(j ava. | ang. Throwabl e t) 596
Rethrows the given Throwable.
doFi nal ly() 206
Removes any attributes that this LoopTagSupport set.
doSt art Tag() 06
Beginsiterating by processing the first item.
get Current () 206
get LoopSt at us() »97
hasNext () 297
Returns information concerning the availability of more items over which to iterate.

next () 207
Returns the next object over which the tag should iterate.

prepar e() »08
Prepares for asingle tag invocation.
rel ease() 208
Rel eases any resources this LoopTagSupport may have (or inherit).
setVar (java.lang. String id),gg
Setsthe'var’ attribute.
setVar Status(java.lang. String statusld),gg
Setsthe 'varStatus’ attribute.
val i dat eBegi n() 5pg
Ensuresthe “begin” property is sensible, throwing an exception expected to propagate
upif itisn't
val i dat eEnd() 508
Ensuresthe “end” property is sensible, throwing an exception expected to propagate
upifitisn't
val i dat eSt ep() 299
Ensuresthe “step” property is sensible, throwing an exception expected to propagate
upifitisn't

Inherited Member Summary

Methodsinherited from class Obj ect

204

Inherited Member Summary

clone(), equal s(Cbject), finalize(), getd ass(), hashCode(), notify(), notifyAl(),
toString(), wait(), wait(long), wait(long, int)

Fields

begin
protected int begin

Starting index ("begin’ attribute)

beginSpecified
prot ect ed bool ean begi nSpeci fi ed

Boolean flag indicating whether *begin’ was specified.

end
protected int end

Ending index of theiteration ("end’ attribute). A value of -1 internally indicates ' no end specified’, although
accessors for the core JSTL tags do not allow this value to be supplied directly by the user.

endSpecified
protected bool ean endSpecified

Boolean flag indicating whether ’end’ was specified.

itemld
protected java.lang. String itemd

Attribute-exposing control

statuslid

protected java.lang. String statusld

Attribute-exposing control

step

protected int step

Iteration step ('step’ attribute)

stepSpecified
protected bool ean stepSpecified

Boolean flag indicating whether 'step’ was specified.

205

Constructors

L oopTagSupport()
publ i ¢ LoopTagSupport ()

Constructs anew LoopTagSupport. As with TagSupport, subclasses should not implement constructors
with arguments, and no-arguments constructors implemented by subclasses must call the superclass
constructor.

M ethods

doAfter Body()

public int doAfterBody()
throws JspException

Continues the iteration when appropriate —- that is, if we (a) have more items and (b) don’t run over our
"end’ (given our 'step’).

Throws:
JspException

doCatch(Throwable)

public void doCatch(java.lang. Throwabl e t)
throws Throwabl e

Rethrows the given Throwable.

Throws:
j ava. |l ang. Thr owabl e

doFinally()
public void doFinally()
Removes any attributes that this LoopTagSupport set.

These attributes are intended to support scripting variables with NESTED scope, so we don’t want to
pollute attribute space by leaving them lying around.

doStartTag()

public int doStartTag()
throws JspException

Begins iterating by processing the first item.

Throws:
JspException

getCurrent()
public java.lang. Object getCurrent()

206

Description copied from interface: j avax. servl et.jsp.jstl.core. LoopTag;gg

Retrieves the current item in the iteration. Behaves idempotently; calling getCurrent() repeatedly should
return the same Object until the iteration is advanced. (Specifically, calling getCurrent() does not advance
theiteration.)

Specified By: get Current 199 ininterface LoopTaggg

Returns: the current item as an object

getL oopStatus()

public javax.servlet.jsp.jstl.core.LoopTagSt at us,gg get LoopSt at us()

Description copied from interface: j avax. servl et.jsp.jstl.core. LoopTag;gg

Retrieves a’status object to provide information about the current round of the iteration.
Specified By: get LoopSt at usgg ininterface LoopTagqgg
Returns. The LoopTagStatus for the current LoopTag.

hasNext()

protected abstract bool ean hasNext ()
throws JspTagException

Returns information concerning the availability of more items over which to iterate. This method must be
provided by concrete subclasses of LoopTagSupport to assist the iterative logic provided by the supporting
base class.

See next for more information about the purpose and expectations behind this tag.
Returns; true if thereisat least one moreitem to iterate over, f al se otherwise

Throws:
JspTagException

See Also: next () og7

next()

protected abstract java.lang. Object next()
throws JspTagException

Returns the next object over which the tag should iterate. This method must be provided by concrete
subclasses of LoopTagSupport to inform the base logic about what objects it should iterate over.

It is expected that this method will generally be backed by an Iterator, but this will not always be the case.
In particular, if retrieving the next object raises the possibility of an exception being thrown, this method
alows that exception to propagate back to the JSP container as a JspTagException; a standalone Iterator
would not be able to do this. (This explains why LoopTagSupport does not simply call for an Iterator from
its subtags.)

Returns: thejavalang.Object to usein the next round of iteration

Throws:
java. util.NoSuchEl ement Excepti on - if next() is called but no new elements are available

javax.servlet.jsp.JspTagEXception - for other, unexpected exceptions

207

JspTagExcepti on

prepar &)
protected abstract void prepare()
throws JspTagException

Prepares for a single tag invocation. Specifically, allows subclasses to prepare for callsto hasNext() and
next(). Subclasses can assume that prepare() will be called once for each invocation of doStartTag() in the
superclass.

Throws:
JspTagExcepti on

release()

public void rel ease()

Releases any resources this LoopTagSupport may have (or inherit).

setVar (String)
public void setVar(java.lang.String id)
Setsthe'var’ attribute.

Parameters:
i d - Name of the exported scoped variable storing the current item of the iteration.

setVar Status(String)

public void setVarStatus(java.lang. String statusld)
Setsthe 'varStatus' attribute.

Parameters:
st at usl d - Name of the exported scoped variable storing the status of the iteration.

validateBegin()

protected void validateBegin()
throws JspTagException

Ensures the “begin” property is sensible, throwing an exception expected to propagate up if it isn’t

Throws:
JspTagExcepti on

validateEnd()

protected void validateEnd()
throws JspTagException

Ensures the “end” property is sensible, throwing an exception expected to propagate up if it isn’t

Throws:
JspTagExcepti on

208

validateStep()

protected void validateStep()
throws JspTagException

Ensures the “step” property is sensible, throwing an exception expected to propagate up if it isn’t

Throws:
JspTagExcepti on

209

210

Package
javax.servlet. sp.jstl.fmt

Class Summary

Classes

Local eSupport 15 Class which exposes the local e-determination logic for resource bundles through
convenience methods.

Local i zati onCont ext 515 Classrepresenting an 118N localization context.

211

javax.servlet.jsp.jstl.fmt

L ocaleSupport

Declaration
public class Local eSupport

java. |l ang. oj ect

+--javax.servlet.jsp.jstl.fnt.Local eSupport

Description

Class which exposes the local e-determination logic for resource bundles through convenience methods.

This class may be useful to any tag handler implementation that needs to produce localized messages. For
example, thismight be useful for exception messages that are intended directly for user consumption on an error
page.

Member Summary

Constructors
Local eSupport () 213

Methods
static getlLocalizedMessage(PageCont ext pageContext, java.lang. String
java.lang. String Kkey)oqa
Retrieves the localized message corresponding to the given key.
static getlLocal i zedMessage(PageCont ext pageContext, java.lang. String
java.lang. String key, java.lang.Cbject args)ois
Retrieves the localized message corresponding to the given key, and performs
parametric replacement using the arguments specified viaar gs.
static getlLocal i zedMessage(PageCont ext pageContext, java.lang. String
java.lang. String key, java.lang. object args, java.lang.String basenane),qs
Retrieves the localized message corresponding to the given key, and performs
parametric replacement using the arguments specified viaar gs.
static getlLocal i zedMessage(PageCont ext pageContext, java.lang. String
java.lang. String key, java.lang.String basenane) ;4
Retrieves the localized message corresponding to the given key.

Inherited Member Summary

Methodsinherited from class Obj ect

clone(), equal s(Qoject), finalize(), getdass(), hashCode(), notify(), notifyAl(),
toString(), wait(), wait(long), wait(long, int)

212

Constructors

L ocaleSupport()
publi c Local eSupport ()

M ethods

getL ocalizedM essage(PageContext, String)

public static java.lang. String getLocal i zedMessage(PageCont ext pageCont ext,
java.l ang. String key)

Retrieves the localized message corresponding to the given key.

The given key islooked up in the resource bundle of the default 118N localization context, whichis
retrieved fromthej avax. servlet.jsp.jstl.fnt.localizati onContext configuration
Setting.

If the configuration setting is empty, or the default 118N |ocalization context does not contain any resource
bundle, or the given key is undefined in its resource bundle, the string “ ???2<key>???" isreturned, where

“<key>" is replaced with the given key.

Parameters:
pageCont ext - the page in which to get the localized message corresponding to the given key

key - the message key
Returns: thelocalized message corresponding to the given key

getL ocalizedM essage(PageContext, String, Object[])

public static java.lang. String getLocal i zedMessage(PageCont ext pageCont ext,
java.lang. String key, java.lang.Object[] args)

Retrievesthe localized message corresponding to the given key, and performs parametric replacement using

the arguments specified viaar gs.

See the specification of the <fmt:message> action for a description of how parametric replacement is
implemented.

Thelocalized message isretrieved asinget Local i zedMessage(pageCont ext, key).

Parameters:
pageCont ext - the page in which to get the localized message corresponding to the given key

key - the message key
ar gs - the arguments for parametric replacement

Returns: thelocalized message corresponding to the given key

getL ocalizedM essage(PageContext, String, Object[], String)

public static java.lang. String getLocal i zedMessage(PageCont ext pageCont ext,
java.lang. String key, java.lang.Object[] args, java.lang. String basenane)

213

Retrieves the localized message corresponding to the given key, and performs parametric replacement using
the arguments specified viaar gs.

See the specification of the <fmt:message> action for a description of how parametric replacement is
implemented.

Thelocalized message isretrieved asinget Local i zedMessage(pageCont ext, key,
basenane) .

Parameters:
pageCont ext - the page in which to get the localized message corresponding to the given key

key - the message key
ar gs - the arguments for parametric replacement
basenane - the resource bundle base name

Returns: thelocalized message corresponding to the given key

getL ocalizedM essage(PageContext, String, String)

214

public static java.lang. String getLocal i zedMessage(PageCont ext pageCont ext,
java.l ang. String key, java.lang.String basenane)

Retrieves the localized message corresponding to the given key.
The given key islooked up in the resource bundle with the given base name.

If no resource bundle with the given base name exists, or the given key is undefined in the resource bundle,
the string “ ??7<key>???" isreturned, where “<key>" is replaced with the given key.

Parameters:
pageCont ext - the page in which to get the localized message corresponding to the given key

key - the message key
basenane - the resource bundle base name

Returns: thelocalized message corresponding to the given key

javax.serv_l et.] sg.j stl.fmt
|ocalizationContext

Declar ation

public class LocalizationContext

java. |l ang. oj ect

+--javax.servlet.jsp.jstl.fnt.LocalizationContext

Description

Class representing an 118N localization context.

An 18N localization context has two components: a resource bundle and the locale that led to the resource

bundle match.

The resource bundle component is used by <fmt:message> for mapping message keys to localized messages,
and the locale component is used by the <fmt:message>, <fmt:formatNumber>, <fmt:parseNumber>,
<fmt:formatDate>, and <fmt:parseDate> actions as their formatting or parsing locale, respectively.

Member Summary

Constructors

M ethods

Local i zati onCont ext () 516
Constructs an empty 118N localization context.
Local i zati onCont ext (j ava. util. Resour ceBundl e bundl €) 514
Constructs an 118N localization context from the given resource bundle.
Local i zati onCont ext (j ava. util. ResourceBundl e bundl e,
java.util.Local e | ocale)yg

Constructs an 118N localization context from the given resource bundle and locale.

java.util.Local e getLocal e() g

Gets the locale of this 118N localization context.
get Resour ceBundl e() 216

java. util.ResourceBund Gets the resource bundle of this 18N localization context.

|l e

Inherited Member Summary

toString(),

Methodsinherited from class Obj ect
clone(), equal s(Obhject), finalize(), getdass(), hashCode(), notify(), notifyAl(),

wait(), wait(long), wait(long, int)

215

Constructors

L ocalizationContext()

public LocalizationContext ()

Constructs an empty 118N localization context.

L ocalizationContext(Resour ceBundle)

public LocalizationContext(java.util.ResourceBundl e bundle)
Constructs an 18N localization context from the given resource bundle.
The localization context’s locale is taken from the given resource bundle.

Parameters;
bundl e - The resource bundle

L ocalizationContext(ResourceBundle, L ocale)
public LocalizationContext(java.util.ResourceBundl e bundle, java.util.Locale |ocale)
Constructs an 18N localization context from the given resource bundle and locale.

The specified locale is the application- or browser-based preferred locale that led to the resource bundle
match.

Parameters;
bundl e - Thelocalization context’s resource bundle

| ocal e - Thelocalization context’s locale

M ethods

getL ocale()

public java.util.Local e getLocal e()
Getsthe locale of this 18N localization context.

Returns: Thelocae of this 18N localization context, or null if this 18N localization context is empty, or
its resource bundle is a (local e-less) root resource bundle.

getResour ceBundle()

public java.util.ResourceBundl e get Resour ceBundl e()
Gets the resource bundle of this 118N localization context.

Returns: The resource bundle of this 118N localization context, or null if this 18N localization context is
empty

216

Package

javax.servlet. sp.jstl.sgl

Class Summary

I nterfaces

Resul t 54 This interface represents the result of a <sgl:query> action.

SQLExecut i onTag,oo Thisinterface allows tag handlers implementing it to receive values for parameter
markersin their SQL statements.

Classes

Resul t Support 550 Supports the creation of ajavax.servlet.jsp.jstl.sgl.Result object from a source
java.sgl.ResultSet object.

217

javax.servlet.jsp.jstl.sql
Result

Declaration
public interface Result

Description
This interface represents the result of a <sgl:query> action. It provides access to the following information in
the query result:

e Theresult rows (get Rows() and get RowsByl ndex())
« The column names (get Col urmNames())
¢ The number of rowsin the result (get RowCount ())

« An indication whether the rows returned represent the complete result or just a subset that islimited by a
maximum row setting (i sLi m t edBy MaxRows())

An implementation of the Resul t interface provides a disconnected view into the result of a query.

Member Summary

Methods
java.lang. String getCol umNanes() ,1g
Returns the names of the columnsin the result.
int getRowCount () qg
Returns the number of rows in the cached ResultSet
java.util. Sortedvap getRows() 219
Returns the result of the query asan array of Sor t edMap objects.
java. |l ang. Ooj ect get RowsByl ndex() 519
Returns the result of the query as an array of arrays.
bool ean i sLim tedByMaxRows() 219
Returns trueif the query was limited by a maximum row setting

M ethods

getColumnNames()
public java.lang. String[] getCol umNanes()

Returns the names of the columns in the result. The order of the namesin the array matches the order in
which columns are returned in method getRowsBYIndex().

Returns: the column names as an array of St r i ng objects

getRowCount()
public int get RowCount ()
Returns the number of rows in the cached ResultSet

218

Returns; the number of rowsin the result

getRows()
public java.util.SortedMap[] get Rows()

Returns the result of the query as an array of Sor t edMap objects. Each item of the array represents a
specific row in the query result.

A row is structured as a Sor t edMap object where the key is the column name, and where the value is the
value associated with the column identified by the key. The column value is an Object of the Javatype
corresponding to the mapping between column types and Java types defined by the JDBC specification
whenthe Resul t Set . get Obj ect () method is used.

The Sor t edMap must usethe Conpar at or java. util. String. CASE_| NSENSI Tl VE_ORDER.
Thismakesit possible to access the key as a case insensitive representation of a column name. This method
will therefore work regardless of the case of the column name returned by the database.

Returns. Theresult rowsasan array of Sor t edMap objects

getRowsByIndex()
public java.lang. Object[][] get RowsByl ndex()

Returns the result of the query asan array of arrays. Thefirst array dimension represents a specific row in
the query result. The array elements for each row are Object instances of the Java type corresponding to the
mapping between column types and Java types defined by the JDBC specification when the

Resul t Set . get Obj ect () method is used.

Returns: theresult rowsasan array of Cbj ect [] objects

isLimitedByM axRows()
publ i c bool ean i sLi nit edByMaxRows()
Returnstrue if the query was limited by a maximum row setting

Returns: true if the query was limited by a maximum row setting

219

javax.servlet.jsp.jstl.sql

ResultSupport

Declaration
public class Result Support

java. |l ang. oj ect

+--javax.servlet.jsp.jstl.sqgl.ResultSupport

Description

Supports the creation of ajavax.servlet.jsp.jstl.sgl.Result object from a source java.sgl.ResultSet object. A
Result object makes it much easier for page authors to access and manipul ate the data resulting from a SQL
query.

Member Summary

Constructors
Resul t Support () 220

M ethods
static Result toResult(java.sqgl.ResultSet rs)jsq
ConvertsaResul t Set objecttoaResul t object.
static Result toResult(java.sqgl.ResultSet rs, int maxRows) ;s
ConvertsmaxRows of aResul t Set objecttoaResul t object.

Inherited Member Summary

Methodsinherited from class Obj ect

clone(), equal s(Cbject), finalize(), getd ass(), hashCode(), notify(), notifyAl(),
toString(), wait(), wait(long), wait(long, int)

Constructors

ResultSupport()
publi ¢ Resul t Support ()

220

M ethods

toResult(ResultSet)

public static javax.servlet.jsp.jstl.sqgl.Result,;g toResult(java.sql.ResultSet rs)
ConvertsaResul t Set objecttoaResul t object.

Parameters:
rs -theResul t Set object

Returns. The Resul t object created from the Resul t Set

toResult(ResultSet, int)

public static javax.servlet.jsp.jstl.sqgl.Result,;g toResult(java.sql.ResultSet rs,
i nt maxRows)

Converts max Rows of aResul t Set object toaResul t object.

Parameters:
rs -theResul t Set object

max Rows - the maximum number of rowsto be cached into the Resul t object.

Returns: TheResul t object created from the Resul t Set , limited by max Rows

221

javax.servlet.jsp.jstl.sql

SQL ExecutionTag

Declaration
public interface SQLExecutionTag

Description

This interface allows tag handlers implementing it to receive values for parameter markersin their SQL
Statements.

Thisinterface isimplemented by both <sgl:query> and <sgl:update>. ItsaddSQ_Par anet er () methodis
called by nested parameter actions (such as <sgl:param>) to substitute Pr epar edSt at enent parameter
valuesfor “?" parameter markers in the SQL statement of the enclosing SQLExecut i onTag action.

The given parameter values are converted to their corresponding SQL type (following the rulesin the JDBC
specification) before they are sent to the database.

Keeping track of the index of the parameter values being added is the responsibility of the tag handler
implementing this interface

The SQLExcecut i onTag interface is exposed in order to support custom parameter actions which may
retrieve their parameters from any source and process them before substituting them for a parameter marker in
the SQL statement of the enclosing SQLExecut i onTag action

Member Summary
Methods
voi d addSQLPar aneter (j ava. | ang. Obj ect val ue) 505
Adds a PreparedStatement parameter value.
Methods

addSQL Parameter (Obj ect)
public void addSQ.Par anet er (j ava. | ang. Obj ect val ue)

Adds a PreparedStatement parameter value. Must behave asiif it calls

Pr epar edSt at enent . set Gbj ect (i nt, Obj ect) . For each tag invocation, the integral index
passed logically to set Obj ect () must begin with 1 and must be incremented by 1 for each subsequent
invocation of addSQLPar amet er () . The Object logically passed to set Cbj ect () must be the
unmodified object received in the value argument.

Parameters:
val ue - the Pr epar edSt at enent parameter value

222

Package

javax.servlet. sp.jstl.tlv

Class Summary

Classes
Perm ttedTagl i bsTLV,y,

Scri pt FreeTLVyyg

A TagLibraryValidator classto allow a TLD to restrict what taglibs (in addition to
itself) may be imported on a page where it’s used.

A TagLibraryValidator for enforcing restrictions against the use of JSP scripting
elements.

223

javax.servlet.jsp.jstl.tlv

PermittedTaglibsTLV

Declaration
public class PernittedTagli bsTLV extends TagLi braryValidat or

java. |l ang. oj ect

|
+- - TagLi braryVal i dat or

+--javax.servlet.jsp.jstl.tlv.PermttedTagli bsTLV

Description
A TagLibraryValidator classto allow a TLD to restrict what taglibs (in addition to itself) may be imported on a
page whereit's used.

This TLV supports the following initialization parameter:

» permittedTaglibs: A whitespace-separated list of URIs corresponding to tag libraries permitted to be
imported on the page in addition to the tag library that references PermittedTaglibsTLV (which is allowed
implicitly).

Member Summary

Constructors
PermittedTagli bsTLV() 204

M ethods
void release() 5
Val i dati onMessage[] validate(java.lang.String prefix, java.lang.String uri,
PageDat a page) o5

Inherited Member Summary

Methodsinherited from class Obj ect

clone(), equal s(Cbject), finalize(), getd ass(), hashCode(), notify(), notifyAl(),
toString(), wait(), wait(long), wait(long, int)

Constructors

PermittedTaglibsTLV()
public PermttedTagli bsTLV()

224

M ethods

release()

public void rel ease()
validate(String, String, PageData)

public Validati onMessage[] validate(java.lang.String prefix, java.lang.String uri,
PageDat a page)

225

javax.servlet.jsp.jstl.tlv

ScriptFreeTLV

Declaration
public class ScriptFreeTLV extends TagLi braryVali dat or

java. |l ang. oj ect

|
+- - TagLi braryVal i dat or

+--javax.servlet.jsp.jstl.tlv.ScriptFreeTLV

Description
A TagLibraryValidator for enforcing restrictions against the use of JSP scripting elements.

This TLV supports four initialization parameters, for controlling which of the four types of scripting elements
are allowed or prohibited:

« allowDeclarations: if true, indicates that declaration elements are not prohibited.
« allowScriptlets: if true, indicates that scriptlets are not prohibited

« allowExpressions: if true, indicates that top-level expression elements (i.e., expressions not associated with
request-time attribute values) are not prohibited.

 allowRTExpressions: if true, indicates that expression elements associated with request-time attribute
values are not prohibited.

The default value for all for initialization parametersisfalse, indicating all forms of scripting elements areto be
prohibited.

Member Summary

Constructors

Script FreeTLV() 207
Constructs anew validator instance.

M ethods
void setlnitParaneters(java.util.Map initParnms)o,s
Sets the values of the initialization parameters, as supplied in the TLD.
Val i dati onMessage[] validate(java.lang.String prefix, java.lang.String uri,
PageDat a page) 257
Validates a single JSP page.

Inherited Member Summary

Methodsinherited from class Obj ect

clone(), equal s(Obhject), finalize(), getdass(), hashCode(), notify(), notifyAl(),
toString(), wait(), wait(long), wait(long, int)

226

Constructors

ScriptFreeTLV()
public ScriptFreeTLV()

Constructs anew validator instance. I nitializes the parser factory to create non-validating, namespace-aware
SAX parsers.

M ethods

setlnitParameter (M ap)

public void setlnitParaneters(java.util.Map initParms)
Sets the values of the initialization parameters, as supplied in the TLD.

Parameters:
i ni t Par nms - amapping from the names of the initialization parametersto their values, as specified in
the TLD.

validate(String, String, PageData)

public Validati onMessage[] validate(java.lang.String prefix, java.lang.String uri,
PageDat a page)

Validates a single JSP page.

Parameters:
pr ef i x - the namespace prefix specified by the page for the custom tag library being validated.

uri -the URI specified by the page for the TLD of the custom tag library being validated.
page - awrapper around the XML representation of the page being validated.

Returns: null, if the page isvalid; otherwise, a ValidationMessage[] containing one or more messages
indicating why the page is not valid.

227

228

APPENDIX A

Compatibility & Migration

This appendix provides information on compatibility between different versions of
JSTL, as well as on how to migrate your web application to take advantage of the
new features of the latest JSTL release.

Al

All

JSTL 1.1 Backwards Compatibility

JSTL 1.1 is backwards compatible with JSTL 1.0. This means that a web-application
that was developed to run with JSTL 1.0 won’t require any modification when run
with JSTL 1.1. Details explaining how this backwards compatibility is achieved are
given in Section A.1.1 below.

If your application executes in an environment that has JSTL 1.1, it is however
recommended that you migrate to JSTL 1.1 to take full advantage of the new
capabilities it offers. Details on how to migrate your web-application from JSTL 1.0
to JSTL 1.1 are given in Section A.2.

How JSTL 1.1 Backwards Compatibility is
Achieved

JSTL 1.0 requires JSP 1.2 (J2EE 1.3 platform). The key difference between JSTL 1.0
and JSTL 1.1 is that the expression language (EL) has moved from the JSTL
specification to the JSP specification. The EL is therefore now part of the JSP 2.0
specification, and JSTL 1.1 requires JSP 2.0 (J2EE 1.4 platform).

A web application developed for JSP 1.2 has a servlet 2.3 deployment descriptor
(web.xml). JSP 2.0 provides backwards compatibility for JSP 1.2 web applications by
disabling by default the EL machinery (i.e. evaluation of EL expressions) when a
web application has a servlet 2.3 deployment descriptor. A web application that uses

229

JSTL 1.0 and which is deployed with a servlet 2.3 deployment descriptor therefore
runs without any modification in a J2EE 1.4 environment because EL expressions are
ignored by JSP 2.0, and JSTL 1.0 keeps evaluating them as was the case with JSP 1.2.

To support backwards compatibility, JSTL 1.1 introduces new URIs that must be
specified to use the new capabilities offered in JSTL 1.1. Among these new
capabilities is the evaluation of EL expressions being performed by the JSP 2.0
container rather than JSTL itself. The new URIs for JSTL 1.1 are as follows:

JSTL 1.1 Tag Libraries

Functional Area URI Prefix
core http://java.sun.conljsp/jstl/core c
XML processing http://java.sun.conjsp/jstl/xnl X
118N capable formatting http://java.sun.com jsp/jstl/fnt fmt
relational db access (SQL) | http://java.sun.com jsp/jstl/sql sql

The new URIs are similar to the old JSTL 1.0 EL URIs, except that j sp/ has been
added in front of j st |, stressing JSTL's dependency on the JSP specification (which
now "owns" the EL). It would have been desirable to move forward with the same
EL URIs in JSTL 1.1, however this would have only been possible at the cost of
losing full backwards compatibility. The JSTL Expert Group felt that maintaining
backwards compatibility was more important than preserving the old URIs.

The JSTL 1.0 URIs are deprecated as of JSTL 1.1. If used, they should normally
appear in a web application that has a servlet 2.3 deployment descriptor to disable
the JSP 2.0 EL machinery. If used with a servlet 2.4 deployment descriptor, the JSP
2.0 EL machinery must be explicitely disabled for the pages where the JSTL 1.0 tag
libraries are used. Consult the JSP specification for details.

A.2

230

Migrating to JSTL 1.1

To migrate from JSTL 1.0 to JSTL 1.1, so a web application can take advantage of the
new features associated with JSTL 1.1, one must do the following:

= Migrate the web application deployment descriptor (web.xml) from serviet 2.3 to
servlet 2.4.
» See Servlet 2.4 specification for details

= Replace all the JSTL 1.0 EL & RT URIs by the new JSTL 1.1 URIs

= Escape all occurrences of “${* in RT actions and template text.
« See JSP 2.0 specification for details.

JSTL 1.1 « November 2003

APPENDIX B

Changes

This appendix lists the changes in the JSTL specification. This appendix is non-
normative.

B.1

JSTL 1.1 Maintenance Release

As already stated in the JSTL 1.0 specification, the specification of the Expression
Language (EL) first introduced in JSTL 1.0 is now moving into the JSP 2.0
specification. The primary goal of the JSTL 1.1 maintenance release is to synchronize
the JSTL specification with the JSP 2.0 specification which now owns the EL. This
maintenance release also adresses clarifications and corrections needed to the initial
specification.

Expression Language moved to the JSP specification

= Necessary changes have been made all across the specification to reflect the fact
that the Expression Language now belongs to the JSP specification (JSP 2.0). This
includes having appendix A removed ("Appendix A - Expression Language
Definition"), as well as having examples modified to take advantage of the fact
that EL expressions can now be used in template text and do not require the use
of the <c:out> action (unless the escapeXml or default features of <c:out> are
required).

Compatibility and Migration

= New Appendix A provides information on compatibility between different
versions of JSTL, as well as on how to migrate a web application to take
advantage of the new features of the latest JSTL release.

Functions

231

232

= Since JSP 2.0 introduces EL functions, JSTL 1.1 defines a simple, standard set of
functions that has been most often requested by page authors. This includes
functions to get the size of a collection, as well as to perform common string
manipulations. Functions are defined in the new Chapter 15.

Support for direct transfer from Reader -> out

= With JSP 2.0, displaying the content of a Reader object to "out" has been identified
as an important use case, creating the need for a mechanism to handle a direct
transfer from reader -> out. This is now provided as an extension of <c:out>.

Default values

= New section 2.9 has been added to describe how default values can be handled in
a generic way in JSTL.

end attribute < begin attribute in iterator actions

= The spec used to constrain the end attribute to be greater than or equal to the
begin attribute. It has now been relaxed to handle this situation according to
common practices of modern programming languages (e.g. C++, Java, Perl). If
end < begin, the loop will simply not be executed.

Character encoding support in <c:import>

= The way character encoding is handled for <c:import> has been corrected in
Section 7.4.

Semantics of locales

= Clarified the fact that the semantics of locales in JSTL are the same as the ones
defined by the class j ava. uti | . Local e (section 8.1). A consequence of this is
that, as of J2SE 1.4, new language codes defined in I1SO 639 (e.g. he, yi , i d) will
be returned as the old codes (e.g. iw ji,in).

Correct the inconsistency between <fmt:message> and <fmt:formatXXX> when
<fmt:message> is used with parametric replacement and a locale-less localization
context

= If the localization context does not have any locale, the locale of the
java.text.MessageFormat is set to the locale returned by the formatting locale
lookup algorithm in section 9.3, except that the available formatting locales are
given as the intersection of the number- and date- formatting locales. If this
algorithm does not yield any locale, the locale of the java.text.MessageFormat is
set to the runtime's default locale.

Null or empty values with formatting actions

= The behavior of <fmt:formatNumber> and <fmt:formatDate> (sections 9.7 and
9.9) has been clarified when value is null or empty.

Connection handling in SQL actions

JSTL 1.1 « November 2003

= Clarifications have been made to the fact that SQL actions in JSTL always release
connections to the database as quickly as possible (a connection is always closed
by the time execution of the action responsible for opening it completes).

Context for XPath expression evaluations nested within <x:forEach>

= A new description subsection has been added to Section 12.6 to clarify how the
context for XPath expression evaluations is obtained within <x:forEach>.

Align behavior of <x:foreach> with <c:forEach>

= Attributes var St at us, begi n, end, and st ep have been added.

Default context node for XPath expression evaluations

= New section "11.1.6 Default Context Node" clarifies how the default context node
for XPath expression evaluations is obtained.

Replace attributes that start with "xml"

= Names beginning with the string "xml" are reserved by the XML specification.
New attribute doc has been added to <x:parse> to replace attribute xm that is
now being deprecated. Also, new attributes doc and docSyst end d have been
added to <x:transform> to replace attributes xm and xnl Syst enl d that are now
being deprecated.

Response Encoding

= The way formatting actions influence the encoding of the response has been
clarified in sections 8.4 and 8.10. Repeated calls to
Ser vl et Response. set Local e() will affect the character encoding of the
response only if it has not already been set explicitely.

Java APls

= The specification of the JSTL Java APIs is now generated directly from the
Javadoc of the reference implementation and is consolidated within its own
chapter (Chapter 16).

Minor corrections

= Status has been corrected with var St at us in section 6.6.

= The resulting locale of examples 1 and 3 in Section 8.3.3 have been corrected.

= The syntax of <sgl:dateParam> in Section 10.8 has been corrected.

Appendix B Changes 233

Changes between Proposed Final Draft
and Final Draft

Many typos and clarifications have been made to the specification. Clarifications and
modifications worth noting include:

Preface

= Added typographical conventions.

Chapter 2 - Conventions

= When an action is required to throw an exception, there were two choices when
no root cause was involved: JspExcepti on or JspTagExcepti on. The
specification has now standardized on JspExcept i on everywhere in the spec
(instead of JspExcept i on in some places (with root cause), and
JspTagExcepti on in some others (no root cause)).

= Clarified the proper handling of constraints in section 2.7.

= Constants names now use “_" as word separators (e.g.
FMT_FALLBACK_LOCALE)

Chapter 3 - Expression Language Overview

= Fixed example featuring the def aul t attribute in section 3.6.

Chapter 4 - General-Purpose Actions
= Transparent conversion now supported on a value to be set as a bean property.

= Clarified behavior of <c:set> when val ue is null, so it has the same semantics as
<c:remove>.

» Clarified the behavior of <c:out> when val ue is null.

Chapter 6 - Iterator Actions

= Corrected the name of method set St at us() to be set Var St at us(), as it
should have been.

= Methods next (), hasNext (), prepare() of class LoopTagSupport are
abstract methods.

= Method hasNext () of class LoopTagSupport returns boolean.

= Added protected fields begi nSpeci fi ed, endSpeci fi ed, and st epSpeci fi ed
to class LoopTagSupport.

Chapter 8 - 118N Actions

= Left over references to j avax. servlet.jsp.jstl.fnt.bundl e have been
changed to j avax. servl et.jsp.jstl.fnt.localizationContext.

| 234 JSTL 1.1 « November 2003

Added the three constructors to class Local i zat i onCont ext and clarified the
behavior of methods get Resour ceBundl e() and get Local e().

Chapter 9 - Formatting Actions

Clarified how the formatting pattern applies in <fmt:number> and
<fmt:parseNumber>.

Chapter 10 - SQL Actions

Clarified the handling of auto-commit mode and isolation level in
<sgl:transaction>.

Clarified the handling of exceptions occurring during the execution of
<sgl:transaction>.

Added clarification to <sql:param> when dealing with St ri ng values (only
works for columns of text type).

Clarified that if dat aSour ce is null, a JspExcept i on is thrown for <sgl:query>,
<sgl:update>, <sql:transaction>, and <sql:setDataSource>.

Chapters 11, 12, 13 - XML Actions

Clarified “Null & Error Handling” for <x:parse> and <x:transform>
In <x:forEach>, if sel ect is empty, a JspExcepti on is now thrown.
Added syntax without body content to <x:if>. It is now similar to <c:if>.

Only Stri ng and Reader objects are now allowed for the xm attribute of
<x:parse>.

Clarified that DOM objects are supported as XPath variables.

Appendix A - Expression Language

B.3

Alternative operators &&, | |, and ! were missing in some of the tables. They now
appear along with their counterpart and, or, and not.

Clarified the definition of integer and floating point literals.

Removed division by 0 as an example of exception for arithmetic operators / and
%.

Changes between Public Draft and
Proposed Final Draft

Many typos and clarifications have been made to the specification. Major changes
include:

Appendix B Changes 235

236

Preface

Added acknowledgements.

Chapter 1 - Introduction

Clarified the fact that actions from EL- and RT- based libraries can be mixed
together.

Chapter 2 - Conventions

Clarified how actions throw exceptions.

“Section 2.8 - Configuration Parameters” has been completely rewritten and is
now titled “Configuration Data”. The way configuration data is handled in JSTL
has been clarified and will now work properly with containers that implement
JSP scopes via a single namespace.

Chapter 4 - Expression Language Support Actions

Renamed the chapter to “General Purpose Actions”.

Removed the restriction that the actions in this chapter are only available in the
EL-based version of the library.

Extended the scope of <c:set> so it supports setting a property of a target
JavaBeans or j ava. uti | . Map object.

Chapter 7 - URL Related Actions

Improved the error handling behavior of <c:import>

<c:url> and <c:redirect> now append the context path to any relative URL that
starts with "/". Added new attribute cont ext to properly handle foreign context
URLs.

Chapter 8 - 118N Actions

In the resource bundle lookup, the locale-less root resource bundle is now
supported if neither the preferred locales nor the fallback locale yield a resource
bundle match.

<fmt:locale> has been renamed to <fmt:setLocale>.

<fmt:bundle> no longer takes 'var' and 'scope’. Creating and storing an 118N
localization context with a resource bundle in a ‘var' or scoped configuration
variable is now done by the new <fmt:setBundle>.

Logging is considered an implementation-specific (deployment) issue and has
been removed from <fmt:message>'s description.

A new class Local i zat i onCont ext has been defined which represents an 118N
localization context containg aj ava. util . Resour ceBundl e and a
java.util . Local e.

javax. servlet.jsp.jstl.fnt.basenane has been replaced with
javax.servlet.jsp.jstl.fnt.localizationContext.

JSTL 1.1 « November 2003

Chapter 9 - Formatting Actions

Formatting actions nested inside a <fmt:bundle> no longer use that bundle's
locale as their formatting locale, but the locale of the enclosing 118N localization
context, which is the (possibly more specific) locale that led to the resource
bundle match.

<fmt:timeZone> no longer takes 'var' and 'scope’. Storing a time zone in a 'var' or
scoped configuration variable is now done by the new <fmt:setTimeZone>.

<fmt:formatNumber> no longer uses the "en" locale to parse numeric values
given as strings, but uses Long.valueOf() or Double.valueOf() instead.

In <fmt:parseNumber>, par seLocal e, which used to support string values only,
now also supports values of type java. util. Local e.

<fmt:formatDate> no longer supports literal values, and no longer has a body. Its
‘value' attribute is no longer optional, meaning the default behaviour of
formatting the current time and date is no longer supported.

In <fmt:parseDate>, par seLocal e, which used to support string values only,
now also supports values of type j ava. util . Local e.

<fmt:setLocale>, formerly known as <fmt:locale>, now also accepts values of type
java. util.Local e (in addition to string values).

The runtime's default locale is no longer used as a fallback, since it is not
guaranteed to be among the supported formatting locales.

<fmt:timeZone> and the new <fmt:setTimeZone> now also accept values of type
java. util.Ti meZone (in addition to string values).

Chapter 10 - SQL Actions

The configuration settings now include JDBC parameters.

<sgl:driver> has been renamed <sqgl:setDataSource>. It now supports attribute
“password” as well as setting configuration variables.

The keys in the Map objects returned by Result.getRows() are now case-
insensitive. The motivation for this change is that some databases return column
names as all-uppercase strings in the ResultSet, while others return them with the
same upper/lowercase mix as was used in the SELECT statement.

Method Resul t. get RowsCount () has been renamed to
Resul t . get RowCount () to be compatible with naming conventions in J2SE.

Method Resul t. get Met aDat a() as well as interface Col utmMet aDat a have
been removed because handling of exceptions encountered when caching
Resul t Set Met aDat a is problematic. New method

Resul t . get Col utmmNanes() has been added to still provide easy access to
column names.

Exception message for <sqgl:query> and <sql:update> has been improved. It now
includes the SQL statement and provides the caught exception as the root cause.

Warning added in <sql:transaction> about the use of commit and rollback.

Appendix B Changes 237

238

JNDI resource path to a data source must now be specified as a relative path, just
as is the case in a J2EE deployment descriptor.

New <sql:dateParam> action added to properly support setting the values of
parameter markers for values of type j ava. uti |l . Date.

The algorithm used by the SQL actions (<sqgl:query>, <sql:update>,
<sgl:transaction>) to access a database has been modified to support
configuration settings for a dataSource as well as for the JDBC DriverManager
facility.

Chapters 11, 12, 13 - XML Actions

Removed the syntax with body content for <x:set>. This was introducing a
potentially confusing mechanism for entering "dynamic" XPath expressions.

URLSs specified in <x:parse> and <x:transform> may now be absolute or relative
URLs.

Clarified the fact that <x:parse> and <x:transform> do not perform any validation
against DTD's or Schemas.

XPath scopes “page”, “request”, “session”, and “application” have been renamed
“pageScope”, “requestScope”, “sessionScope”, and “applicationScope” to be the

same as the names of implicit objects in the expression language.

Appendix A - Expression Language

Implicit objects page, r equest, sessi on, appl i cati on, have been renamed
pageScope, r equest Scope, sessi onScope, appl i cati onScope.

Implicit object par ans has been renamed par anVal ues.

Added implicit objects header, header Val ues, cooki e, and i ni t Par am
Coercion rules have been improved.

New operator “empty” has been added.

“eq” and “ne” have been added as alternatives to “==" and “!="

“&&”, “117, “!” have been added as alternatives to “and”, “or”, and “not”.

JSTL 1.1 « November 2003

	JavaServer Pages™ Standard Tag Library
	Contents
	Preface
	Related Documentation
	Typographical Conventions
	Acknowledgments
	Comments

	Introduction
	1.1 Goals
	1.2 Multiple Tag Libraries
	1.3 Container Requirement

	Conventions
	2.1 How Actions are Documented
	2.1.1 Attributes
	2.1.2 Syntax Notation

	2.2 Scoped Variables
	2.2.1 var and scope
	2.2.2 Visibility

	2.3 Static vs Dynamic Attribute Values
	2.4 White Spaces
	2.5 Body Content
	2.6 Naming
	2.7 Errors and Exceptions
	2.8 Configuration Data
	2.9 Default Values

	Expression Language Overview
	3.1 Expressions and Attribute Values
	3.2 Accessing Application Data
	3.3 Nested Properties and Accessing Collections
	3.4 Operators
	3.5 Automatic Type Conversion
	3.6 Default Values

	General-Purpose Actions
	4.1 Overview
	4.2 <c:out>
	4.3 <c:set>
	4.4 <c:remove>
	4.5 <c:catch>

	Conditional Actions
	5.1 Overview
	5.2 Custom Logic Actions
	5.3 <c:if>
	5.4 <c:choose>
	5.5 <c:when>
	5.6 <c:otherwise>

	Iterator Actions
	6.1 Overview
	6.1.1 Collections of Objects to Iterate Over
	6.1.2 Map
	6.1.3 Iteration Status
	6.1.4 Range Attributes
	6.1.5 Tag Collaboration

	6.2 <c:forEach>
	6.3 <c:forTokens>

	URL Related Actions
	7.1 Hypertext Links
	7.2 Importing Resources
	7.2.1 URL
	7.2.2 Exporting an object: String or Reader
	7.2.3 URL Encoding
	7.2.4 Networking Properties

	7.3 HTTP Redirect
	7.4 <c:import>
	7.5 <c:url>
	7.6 <c:redirect>
	7.7 <c:param>

	Internationalization (i18n) Actions
	8.1 Overview
	8.1.1 <fmt:message>

	8.2 I18n Localization Context
	8.2.1 Preferred Locales

	8.3 Determinining the Resource Bundle for an i18n Localization Context
	8.3.1 Resource Bundle Lookup
	8.3.2 Resource Bundle Determination Algorithm
	8.3.3 Examples

	8.4 Response Encoding
	8.5 <fmt:setLocale>
	8.6 <fmt:bundle>
	8.7 <fmt:setBundle>
	8.8 <fmt:message>
	8.9 <fmt:param>
	8.10 <fmt:requestEncoding>
	8.11 Configuration Settings
	8.11.1 Locale
	8.11.2 Fallback Locale
	8.11.3 I18n Localization Context

	Formatting Actions
	9.1 Overview
	9.1.1 Formatting Numbers, Currencies, and Percentages
	9.1.2 Formatting Dates and Times

	9.2 Formatting Locale
	9.3 Establishing a Formatting Locale
	9.3.1 Locales Available for Formatting Actions
	9.3.2 Locale Lookup
	9.3.3 Formatting Locale Lookup Algorithm

	9.4 Time Zone
	9.5 <fmt:timeZone>
	9.6 <fmt:setTimeZone>
	9.7 <fmt:formatNumber>
	9.8 <fmt:parseNumber>
	9.9 <fmt:formatDate>
	9.10 <fmt:parseDate>
	9.11 Configuration Settings
	9.11.1 TimeZone

	SQL Actions
	10.1 Overview
	10.1.1 Data Source
	10.1.2 Querying a Database
	10.1.3 Updating a Database
	10.1.4 SQL Statement Parameters

	10.2 Database Access
	10.3 <sql:query>
	10.4 <sql:update>
	10.5 <sql:transaction>
	10.6 <sql:setDataSource>
	10.7 <sql:param>
	10.8 <sql:dateParam>
	10.9 Configuration Settings
	10.9.1 DataSource
	10.9.2 MaxRows

	XML Core Actions
	11.1 Overview
	11.1.1 XPath Context
	11.1.2 XPath Variable Bindings
	11.1.3 Java to XPath Type Mappings
	11.1.4 XPath to Java Type Mappings
	11.1.5 The select Attribute
	11.1.6 Default Context Node
	11.1.7 Resources Access
	11.1.8 Core Actions

	11.2 <x:parse>
	11.3 <x:out>
	11.4 <x:set>

	XML Flow Control Actions
	12.1 Overview
	12.2 <x:if>
	12.3 <x:choose>
	12.4 <x:when>
	12.5 <x:otherwise>
	12.6 <x:forEach>

	XML Transform Actions
	13.1 Overview
	13.2 <x:transform>
	13.3 <x:param>

	Tag Library Validators
	14.1 Overview

	Functions
	15.1 Overview
	15.1.1 The length Function
	15.1.2 String Manipulation Functions

	15.2 fn:contains
	15.3 fn:containsIgnoreCase
	15.4 fn:endsWith
	15.5 fn:escapeXml
	15.6 fn:indexOf
	15.7 fn:join
	15.8 fn:length
	15.9 fn:replace
	15.10 fn:split
	15.11 fn:startsWith
	15.12 fn:substring
	15.13 fn:substringAfter
	15.14 fn:substringBefore
	15.15 fn:toLowerCase
	15.16 fn:toUpperCase
	15.17 fn:trim

	Java APIs
	javax.servlet.jsp.jstl.core
	ConditionalTagSupport
	Config
	LoopTag
	LoopTagStatus
	LoopTagSupport

	javax.servlet.jsp.jstl.fmt
	LocaleSupport
	LocalizationContext

	javax.servlet.jsp.jstl.sql
	Result
	ResultSupport
	SQLExecutionTag

	javax.servlet.jsp.jstl.tlv
	PermittedTaglibsTLV
	ScriptFreeTLV

	Compatibility & Migration
	A.1 JSTL 1.1 Backwards Compatibility
	A.1.1 How JSTL 1.1 Backwards Compatibility is Achieved

	A.2 Migrating to JSTL 1.1

	Changes
	B.1 JSTL 1.1 Maintenance Release
	B.2 Changes between Proposed Final Draft and Final Draft
	B.3 Changes between Public Draft and Proposed Final Draft

